lu.se

Kommunikationsteknikportalen

Lunds Tekniska Högskola

Denna sida på svenska This page in English

Kalender

Här hittar du samlade händelser framöver inom LTHs tekniska och naturvetenskapliga områden, många med bäring på kommunikationsteknik. Till höger har du direktlänk till kalendern för Elektro- och Informationsteknik.

Kalendarium för kommunikationsteknik

"A Hardy-Lieb-Thirring inequality for fractional Pauli operators"

Seminarium

Tid: 2018-03-14 15:30 till: 16:30
Plats:MH:333
Kontakt:mikael.persson_sundqvist@math.lth.se


PDE-seminar Speaker: Søren Fournais, Aarhus university

ABSTRACT

In this talk we will discuss recent work on Hardy-Lieb-Thirring inequalities for the Pauli operator. The classical Lieb-Thirring inequality estimates the sum of the negative eigenvalues of a Schr\”{o}dinger operator 
$-\Delta + V$ by an integral of a power of the potential. In $3$-dimensions, this becomes
$$
\tr( - \Delta + V)_{-} \leq C \int (V(x))_{-}^{5/2}\,dx
$$
The classical Hardy inequality states that (also in $3D$),
$$
-Delta - \frac{1}{4 |x|^2} \geq 0,
$$
where the constant $\frac{1}{4}$ is the sharp constant for this bound.

It is well known, that these inequalities can be combined to yield "Hardy-Lieb-Thirring inequalities”, i.e. the Lieb-Thirring inequality above still holds (possibly with a different constant) if $V$ is replaced by $- \frac{1}{4 |x|^2} + V$ on the left side. 

In this talk we will discuss similar inequalities, where the non-relativistic kinetic energy operator $-\Delta$ is replaced by a magnetic Pauli operator. In particular, we will discuss a relativistic version, where the kinetic energy is the square root of a Pauli operator, and where $ \frac{1}{4 |x|^2}$ is replaced by $\frac{c_H}{|x|}$, with $c_H$ being the critical Hardy constant for the relativistic problem.

This is joint work with Gonzalo Bley.

Disputationer

Följande disputationer är på gång:

 

27 Nov: Iman Vakili. Opponent: Prof. Andrea Neto