Electrical and Information Technology

Faculty of Engineering, LTH

Denna sida på svenska This page in English


AI Lund lunch seminar: In-memory computing to solve AI’s energy consumption bottle-neck


From: 2021-05-05 12:00 to 13:15
Place: Online - link by registration
Contact: Jonas [dot] Wisbrant [at] cs [dot] lth [dot] se
Save event to your calendar

Ferroelectric memristors for ultra-low power neuromorphic computing.

Title: In-memory computing to solve AI’s energy consumption bottle-neck

When: 5 May at 12.00-13.15

Speaker: Mattias Borg, Dept. of Electrical and Information Technology, LTH , Lund University


The bottle-neck for continued development of Machine Learning lies in the escalating energy consumption during model training. Ultimately, this will require new hardware that implements non-von Neumann architectures, enabling computing-in-memory and even online unsupervised learning by brain-inspired methods.

Memristors based on ferroelectric memory elements are a promising route to such hardware. Here I will introduce memristor-based computing-in-memory, it's benefits in terms of energy-efficiency and our research on the ferroelectric devices that can make it reality.

The event is a part of Lund University sustainability week 3-8 May 2021.


Please register at: in order to get an access link to the zoom platform.