General syllabus for third-cycle studies in Production and Materials Engineering TEMMTF00

The syllabus was approved by the Board of the Faculty of Engineering/LTH 24 September 2007 and most recently amended 12 March 2019 (reg. no U 2019/104).

1. Subject description

Production and Materials Engineering is an interdisciplinary research subject with numerous industrial applications. The subject includes studies of production processes, machines and methods and their use in manufacturing systems, e.g. models describing different manufacturing processes such as cutting, casting and welding and the monitoring, optimising, simulating and controlling of these processes. The subject also covers the system-oriented aspects of manufacturing and essential concepts such as production reliability. Furthermore, technologies for production support are addressed, partly incorporated in the concept computer-based engineering. The interfaces with other subjects are an increasingly important aspect of the activities. Accordingly, the applied aspects of materials engineering are key to many research projects in the subject, for example dealing with welding, casting, recycling, sheet-metal working and manufacturing methods for composite materials. Issues associated with the simulation of manufacturing economics, in which different manufacturing scenarios are assessed financially, are of great importance.

2. Objective of third-cycle studies at LTH

The Board of LTH established the following objective for third-cycle studies on 15 February 2007.

The overall objective of third-cycle studies at LTH is to contribute to social development and prosperity by meeting the needs of business and industry, academia and wider society for staff with third-cycle qualifications. LTH shall primarily provide education leading to a PhD or licentiate in the fields of LTH’s professional degrees. The programmes are first and foremost intended for the further training of engineers and architects. The programmes are designed to encourage personal development and the individual’s unique qualities.

Third-cycle graduates from LTH shall demonstrate:

− proficiency in research theories and methods and in a critical, scientific approach
– both breadth and depth of knowledge within the subject of his or her third-cycle studies

The programmes aim to develop:
– creativity and independence with the ability to formulate advanced research issues, solve problems and plan, carry out and evaluate projects within a set time frame
– openness to change
– personal networks, both national and international
– social skills and communication skills
– teaching ability
– innovation skills, leadership and entrepreneurship

In order to enable students to achieve these skills and abilities, LTH provides:
– high-quality supervision and good conditions for study in a creative environment
– a good balance between basic and applied research, with openness to wider society
– a range of advanced third-cycle courses at both departmental and faculty level
– a good balance between courses and thesis work
– opportunities to present research findings at national and international conferences and in internationally recognised journals, or by another equivalent method which leads to wide exposure and circulation
– opportunities to spend time in international research environments for short or extended periods

3. Learning outcomes for third-cycle studies

The learning outcomes for third-cycle studies are given in the Higher Education Ordinance.

3.1 Licentiate

Knowledge and understanding
For a Licentiate the third-cycle student shall:
– demonstrate knowledge and understanding in the field of research including current specialist knowledge in a limited area of this field as well as specialised knowledge of research methodology in general and the methods of the specific field of research in particular

Competence and skills
For a Licentiate the third-cycle student shall:
– demonstrate the ability to identify and formulate issues with scholarly precision critically, autonomously and creatively, and to plan and use appropriate methods to undertake a limited piece of research and other qualified tasks within predetermined time frames in order to contribute to the formation of knowledge as well as to evaluate this work
– demonstrate the ability in both national and international contexts to present and discuss research and research findings in speech and writing and in dialogue with the academic community and society in general
– demonstrate the skills required to participate autonomously in research and development work and to work autonomously in some other qualified capacity
Judgement and approach
For a Licentiate the third-cycle student shall:
- demonstrate the ability to make assessments of ethical aspects of his or her own research
- demonstrate insight into the possibilities and limitations of research, its role in society and the responsibility of the individual for how it is used
- demonstrate the ability to identify the personal need for further knowledge and take responsibility for his or her ongoing learning

3.2 Doctor of Philosophy
Knowledge and understanding
For the degree of Doctor of Philosophy the third-cycle student shall:
- demonstrate broad knowledge and systematic understanding of the research field as well as advanced and up-to-date specialised knowledge in a limited area of this field
- demonstrate familiarity with research methodology in general and the methods of the specific field of research in particular

Competence and skills
For the degree of Doctor of Philosophy the third-cycle student shall:
- demonstrate the capacity for scholarly analysis and synthesis as well to review and assess new and complex phenomena, issues and situations autonomously and critically
- demonstrate the ability to identify and formulate issues with scholarly precision critically, autonomously and creatively, and to plan and use appropriate methods to undertake research and other qualified tasks within predetermined time frames and to review and evaluate such work
- demonstrate through a thesis the ability to make a significant contribution to the formation of knowledge through his or her own research
- demonstrate the ability to identify the need for further knowledge
- demonstrate the capacity to contribute to social development and support the learning of others both through research and education and in some other qualified professional capacity

Judgement and approach
For the degree of Doctor of Philosophy the third-cycle student shall:
- demonstrate intellectual autonomy and disciplinary rectitude as well as the ability to make assessments of research ethics
- demonstrate specialised insight into the possibilities and limitations of research, its role in society and the responsibility of the individual for how it is used

4. General and specific admission requirements
A person meets the general admission requirements for third-cycle courses and study programmes if he or she:
1. has been awarded a second-cycle qualification, or
2. has satisfied the requirements for courses comprising at least 240 credits of which at least 60 credits were awarded in the second cycle, or
3. has acquired substantially equivalent knowledge in some other way in Sweden or abroad.

The higher education institution may permit an exemption from the general entry requirements for an individual applicant, if there are special grounds. Ordinance (2010:1064).

A person meets the specific admission requirements if he or she has

1. at least 120 credits of relevance to the field, including at least 60 second-cycle credits, and a second-cycle degree project of at least 30 credits of relevance to the field, or
2. a second cycle degree in a relevant field, or a qualification deemed to be equivalent

Furthermore, the student must have documented knowledge corresponding to the following LTH courses:
- Production and Manufacturing Methods (MMT012; 7.5 credits)
- Flexible Manufacturing Systems (MMT045; 7.5 credits)
- Production Technology (MMT031; 7.5 credits)

Exemption from this requirement can be granted if the student’s third-cycle specialisation justifies another type of degree or equivalent training. However, the student must take the courses in the first year of the programme.

Finally, the student must be judged to have the potential to complete the programme.

Exemptions from the admission requirements may be granted by the Board of LTH.

5. Selection

Selection for third-cycle studies is based on the student’s potential to profit from such studies.

The assessment of potential in accordance with the first paragraph is made primarily on the basis of academic results from the first and second cycle. Special attention is paid to the following:

1. Knowledge and skills relevant to the thesis project and the subject of study. These may be demonstrated through documents appended to the application and at a possible interview.
2. An assessment of ability to work independently and to formulate and tackle research problems. The assessment could be made on the basis of the student’s degree project and a discussion of this at a possible interview.
3. Written and oral communication skills
4. Other experience relevant to the third-cycle studies, e.g. professional experience
6. Degree requirements

Third-cycle studies lead to a PhD or, if the student wishes or if it has been specified in the decision on admission, to a licentiate. The student also has the right to complete a licentiate as a stage in his or her third-cycle studies, but is not obliged to do so.

The requirements for a licentiate are:
- passed courses of at least 45 credits, and
- a passed thesis of a scope corresponding to studies of at least 60 credits

The thesis and courses shall comprise at least 120 credits in total.

The requirements for a PhD are
- passed courses of at least 60 credits, and
- a passed thesis of a scope corresponding to studies of at least 120 credits

The thesis and courses shall comprise at least 240 credits in total.

6.1 Degrees awarded

The programme can lead to the following degrees:

*Teknologie licentiatexamen/Licentiate in Engineering*
*Teknologie doktorsexamen/Doctor of Philosophy in Engineering* or:
*Filosofie licentiatexamen/Licentiate of Philosophy*
*Filosofie doktorsexamen/Doctor of Philosophy*

7. Course component

The programme is to include courses. For each course, an examiner shall be appointed at the department that delivers the course. The examiner shall draw up a written syllabus which states the course title in Swedish and English, the learning outcomes of the course, the course content and the number of credits.

The individual study plan is to include details of which courses the individual student shall or may include in his or her studies and how many credits for each course may be included in the degree. Courses taken at other faculties or higher education institutions may also be included in the study plan.

It is compulsory to participate in and pass the course Introductory Workshop for Newly Admitted Doctoral Students at LTH (*Introduktionskurs för nyantagna doktorander vid LTH*) GEM056F or the equivalent.

The following guidelines apply to the design of the course component of the programme. Courses are primarily to be selected on the basis of the research project. The courses can be specified as follows:

*G*: Courses in fundamental sciences such as mathematics and mathematical statistics, primarily intended to complement previous studies and for professional development

*T*: Courses in applied subjects such as production engineering, product development and engineering logistics, and courses in fundamental engineering
subjects such as mechanical engineering, solid mechanics, thermodynamics, materials engineering and measuring technologies. The courses are intended to provide specialised and broadened knowledge within and outside the individual subject and research project.

M: Other courses providing personal and/or professional development but not directly classifiable as G or T courses.

The courses may be ordinary taught courses or independent study courses with or without experimental components and can be assessed through exams or other reports.

The programme in Production and Materials Engineering does not include compulsory courses. The course component is to be adapted to the individual student’s prior knowledge and specialisation.

8. Thesis

The programme shall include a research project documented in a licentiate or doctoral thesis.

Given the applied or industrial character of the subject, parts of the programme can be carried out in collaboration with industry. The research project may be proposed by an industry partner, and case studies and certain experimental components can take place in an industrial environment when suitable.

The basic forms for licentiate and PhD theses are monographs or compilations. Combinations of these two forms are also possible. Compilation theses should have English as the standard language, although some of the included publications may be written in other languages. Monographs, on the other hand, should be entirely written in either Swedish or English.

8.1 Licentiate thesis

The licentiate thesis is to be reviewed at a seminar and should be available approximately a month in advance of the seminar. At the seminar, the student is to make a presentation which is subsequently to be reviewed by a seminar leader through questions or a discussion.

8.2 PhD thesis

Suitable parts of a licentiate thesis may be included in the PhD thesis. At the defence of the thesis, the student is to defend the thesis and place it in a wider context, in accordance with the outcomes stated in section 3.

9. Transitional provision

For doctoral students with an admission date of 1 January 2019 or later, it is compulsory to participate in and pass the course Introductory Workshop for Newly Admitted Doctoral Students at LTH (Introduktionskurs för nyantagna doktorander vid LTH) GEM056F or the equivalent in order to fulfil the requirements for the degree.