


Sampling and mixing

LUND UNIVERSITY

STATE WAR

Mixtures

- · Type of mixtures
 - Positive mixtures- spontaneously homogenously solutions
 - Negative mixtures-Spontaneously separate-emulsions
 - Neutral mixtures- neutral -powders
- · Neutral mixtures
 - Homogeneity depends on handling and process conditions
 - Type of neutral mixtures
 - · Random mix
 - · "Perfect mix"
 - · Ordered mix

- · Why do we take samples?
- How many samples?
- · Where and with what technique?
- · How much?

LUND UNIVERSITY

CONTRACTOR OF THE PROPERTY OF

Why do we take samples?

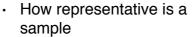
- · To detect variation
 - validate processes
 - Product quality variations
- To describe the sample gross sample "general prov"
- · To control processes

How many samples?

- · Depends on what information you want
- · Remember the statistics
 - Accuracy
 - Precision
 - Variance

LUND UNIVERSITY

Variance



- Example
- 400g A with a weight of 0,05g
- · 400g B with a weight of 0,1g
- · Sample weight 50 g
- · What is the Variance

 Effect of sample size on Variance

Sample	σ
100	1,3%
50	1,88%
25	2,7%
10	4,3%

Variance as a tool to estimates number of samples

true value =
$$x_m \pm \frac{ts}{\sqrt{n}}$$

- · Normal distribution
- 95% conf. Interval t=1,96
- t-distribution
- 95% conf. Interval t=2,14 for n=15-1

Number of samples

 Depends on wanted precision and standard deviations of samples

$$n = \left(\frac{ts_t}{E}\right)^2$$

LUND UNIVERSITY

Where and with what technique?

- A lorry comes in with grains to a mill
- Validation of a tray dryer
- Process sampling from a mill stream
- Sampling from an oral dispersion in a bottle

Golden rules of sampling

- · A powder should be sampled when in motion
- The whole stream of powder should be taken for many short increments of time in preference to part of the stream being taken for the whole time

LUND UNIVERSITY

How much?

- Best rule adjust to the situation (scale of scrutiny)
 - Product characteristic
 - Demand on accuracy
- However
 - To few particles will give to much variation
 - Low amount of one component increase the need of large samples for detection

Effect of scale of scrutiny

Sample				
number		N=1000	N=10 000	N= 100 000
	1	1	7	108
	2	0	10	91
	3	2	8	105
	4	1	15	116
	5	0	13	84
	6	1	10	93
	7	1	6	113
average				
/1000		0,85714286	0,98571429	1,01428571
S		0,69006556	0,32366944	0,12149858

True value 1/1000

LUND UNIVERSITY

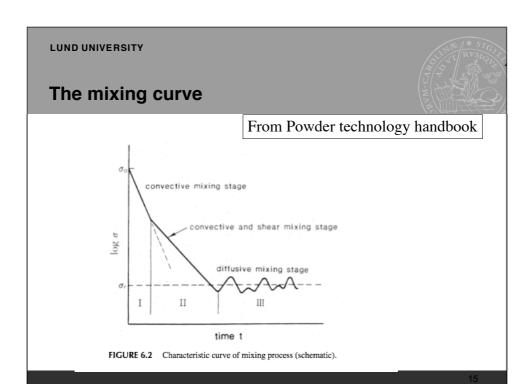
Mixing

- Purpose: To obtain as homogenous bulk as possible
- · Common problems
 - Mix in a small amount of one substance in a large bulk
 - Segregation and over mixing
 - Mixing that effects the size of the particles

Quality of a mix

- A mix is evaluated from standard mean and standard deviation (of appropriate kind)
- · Problem
 - Segregated materials are not following a normal distribution
 - Is dependent on sample size
- · Variance might give a better picture
- · Mixing index also an alternative

$$M = \frac{\sigma_{randommix}}{\sigma_{sample}}$$


10

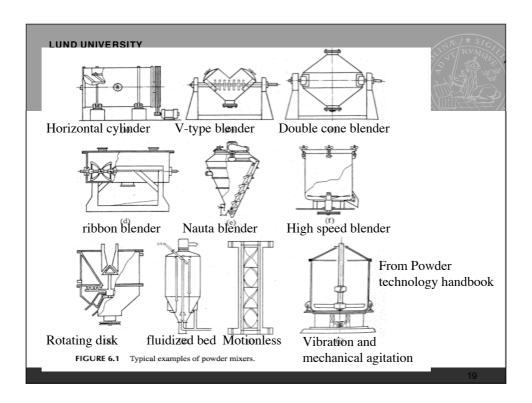
LUND UNIVERSITY

Mixing mechanisms

- Convection
 - Due to circulating flow of powder during mixing
- · Shear Mixing
 - The momentum exchange between the powder particles having different velocities
- Diffusion
 - The random motion of powder particles

Mixing

- Standard equipment
 - High share mixers
 - Tumbling mixers
 - · Y-cone
 - · Rotating cube
 - · Double cone
 - Fluidized bed
 - Agitator mixers


- · Things to consider
 - Homogeneity
 - Risk for overmixing
 - · Leading to demixing
 - Influence properties of particles
 - High share rates
 - Influence particle size for week powders
 - Scaling up
 - · Not always linear

Mixer types

- Segregating
 - Rotating drum
 - V-blender
 - Double cone blender
 - Cubic blenders
- Non segregating
 - Ribbon blender
 - Nauta blender
 - Lödiger
 - Fluidizing blender (Forberg)

- Characterized by Froudes number
- Fr<1
 - Thrust mixers -Ribonblender, Nauta mixer
 - Free fall mixers -V-blender
- · Fr≈1
 - Fluidized beds
- Fr>1
 - Centrifugal mixers
 - Intensive mixers

How do they look

What to consider when designing a mixing process

- What's needed for homogenous mixer
- Mixing time
- Batch size
- · Degree of filling
- · Energy need
- Temperature
- · Mild or shearing mixing
- · Deagglomeration
- Segregation

- · Handling of powder
- Cleaning
- · Worker protection
- Explosion risks
- Prize
- Material
- Etc etc etc

Segregation mechanisms

- Percolation-slip through the holes
- Trajectory Effect size or density segregation due to air drag during filing or feeding

$$L = \frac{v_{\rm h} \rho d^2}{18\mu}$$

- · Rolling Effect -Due to friction and gravity
- Stumbling Effect , Push-Away Effect
- Elutriation effects- dusting segregation-dust layer formed on top of particle bed
- Densification

LUND UNIVERSITY

STATE RANGO

Segregation

- · Can occur
 - During mixing
 - Storage
 - Transport

- Can be counteracted by
 - Narrow particle size
 - Ordered mixtures
 - Irregular and coehisive powder
 - Granulation
 - Ordered mixtures
 - Reduce vibrations