

Lecture 5. Laminar Premixed Flames Structures and Propagation

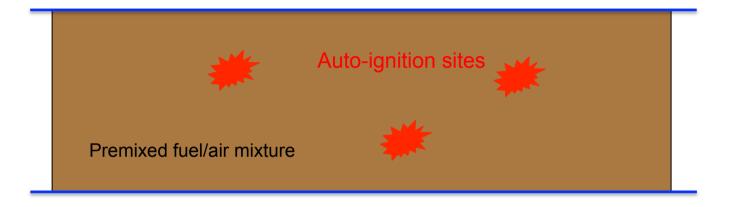
Premixed flames

Premixed flames causing coal mine explosion

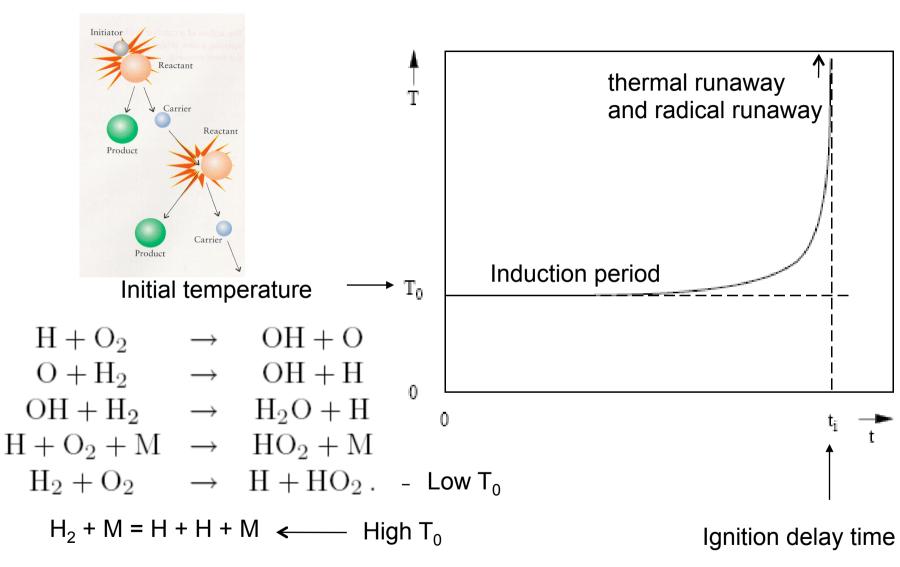
A mine explosion in the Ukraine resulted in 36 dead, 14 missing, and this guy looking very terrible indeed. The explosion was methane gas, and they were mining coal. August 2001. http://cellar.org/showthread.php?t=452

SGT-750 37 MW, 40% Launched nov 2010

Premixed fuel/air mixture: auto-ignition

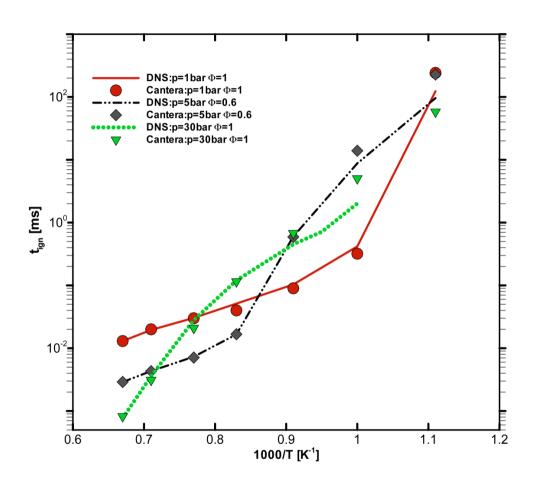


Hydrogen/air auto-ignition



Hydrogen/air auto-ignition

$$\begin{array}{cccc} H + O_2 & \rightarrow & OH + O \\ O + H_2 & \rightarrow & OH + H \\ OH + H_2 & \rightarrow & H_2O + H \\ H + O_2 + M & \rightarrow & HO_2 + M \\ H_2 + O_2 & \rightarrow & H + HO_2 \,. \end{array}$$

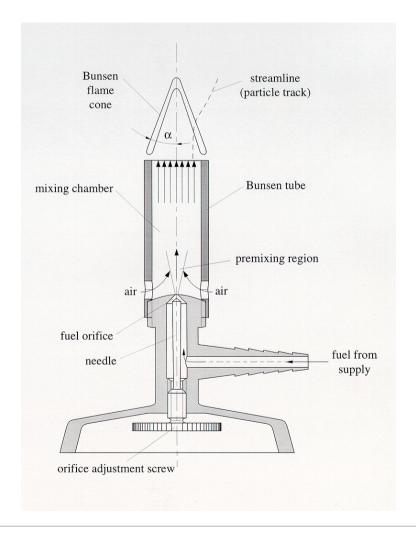


Ignition delay time of H2/air mixture

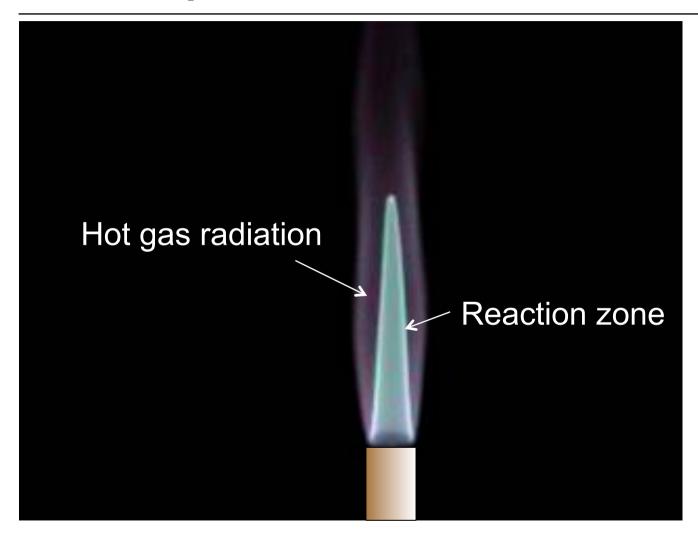
Structures and propagation of laminar premixed flames

- Structures of laminar premixed flames
- Burning velocity of lamniar premixed flames
- Propagation of laminar premixed flames in flow field
- Stabilization of premixed flames
- Laminar premixed flame instability

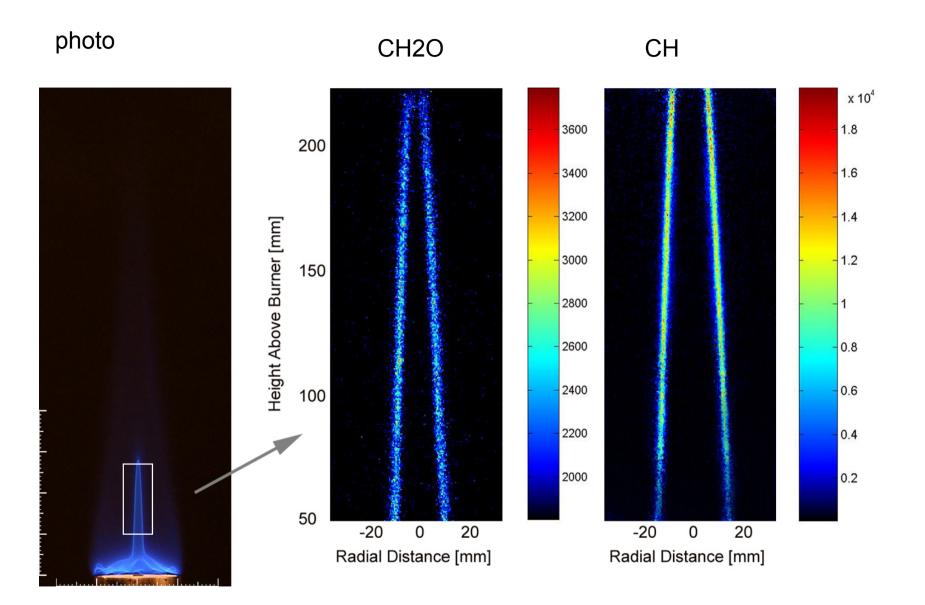
Laminar premixed flames: Bunsen burner



Laminar premixed flames



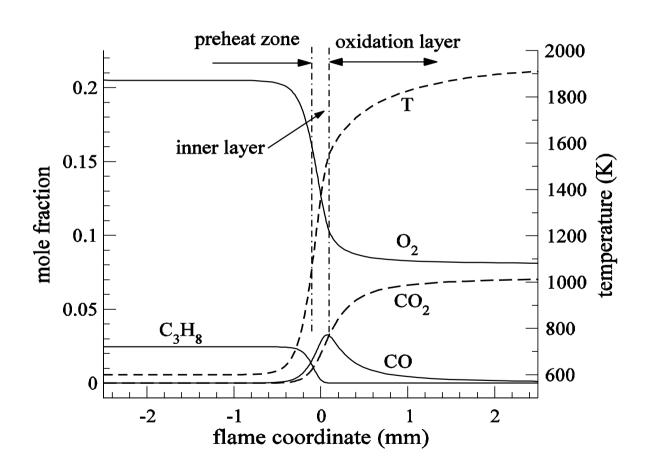
Experimental observations of flames



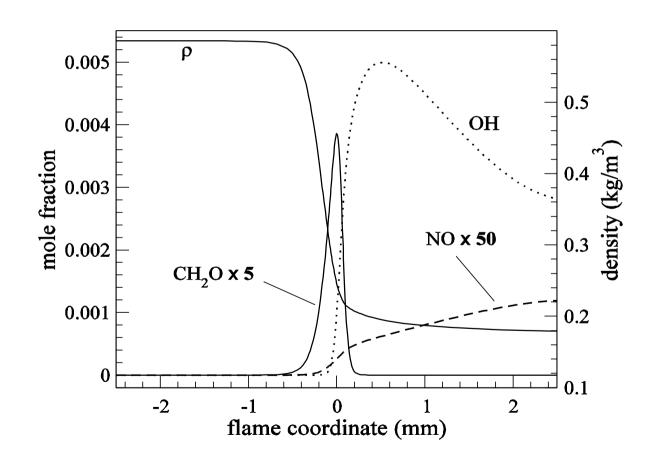
Vo=0.45 m/s, phi=1.17; Vin=11m/s, phi=1.1

X.S. Bai

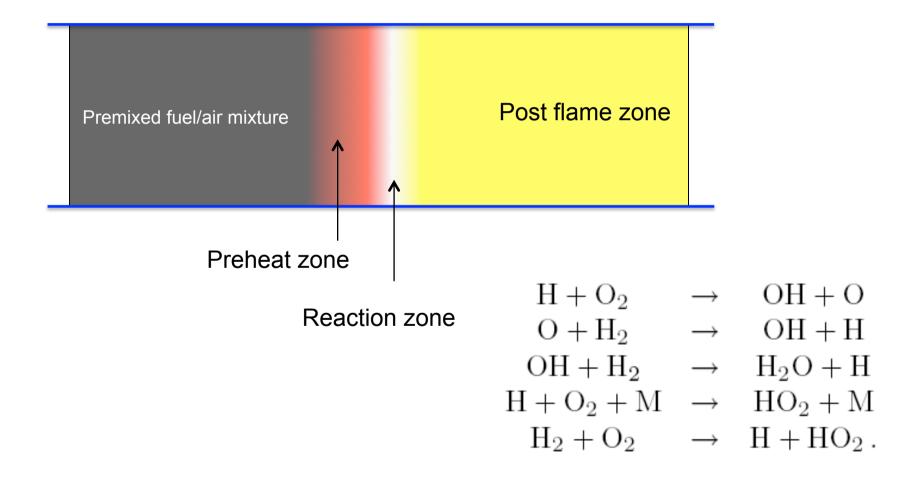
Structure of premixed flames



Structure of premixed flames



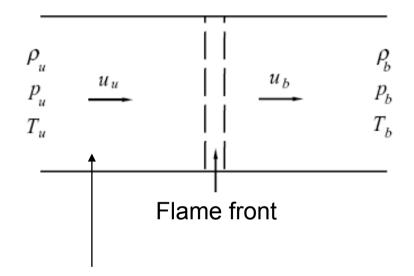
Premixed fuel/air mixture: flame propagation



Structure of premixed flames

- Preheat zone: heating up the reactants
- Inner-layer: radical formation
- Oxidation-layer: finishing the remaining reactions
- Post-flame zone: hot products, NOx formation

Unburned fuel/air mixture



Burned hot products

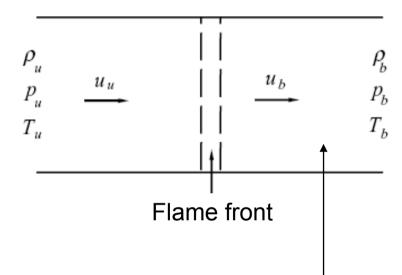
$$F + A = P$$

$$1 \quad \gamma_A \quad 1 + \gamma_A$$

$$Y_{F,u}/Y_{A,u} = \Phi/\gamma_A$$
, and $Y_{F,u} + Y_{A,u} = 1$

$$Y_{F,u} = \frac{\Phi}{\Phi + \gamma_A}, \ Y_{A,u} = \frac{\gamma_A}{\Phi + \gamma_A}, \ \text{and} \ Y_{O,u} = \frac{0.233\gamma_A}{\Phi + \gamma_A}, \ Y_{N,u} = \frac{0.767\gamma_A}{\Phi + \gamma_A},$$

Unburned fuel/air mixture



Burned hot products

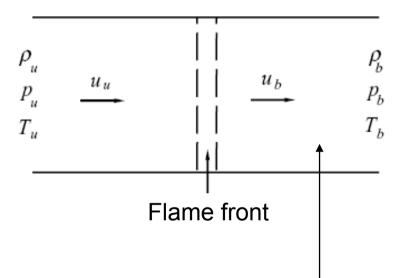
$$\Phi > 1$$

$$Y_{F,b} = Y_{F,u} - Y_{A,u} / \gamma_A = (\Phi - 1) Y_{A,u} / \gamma_A = Y_{F,u} \frac{\Phi - 1}{\Phi} = \frac{\Phi - 1}{\Phi + \gamma_A},$$

$$Y_{O,b} = 0, Y_{N,b} = Y_{N,u} = \frac{0.767\gamma_A}{\Phi + \gamma_A}$$

$$Y_{P,b} = 1 - Y_{F,b}$$
, P includes N

Unburned fuel/air mixture



Burned hot products

$$\Phi < 1$$

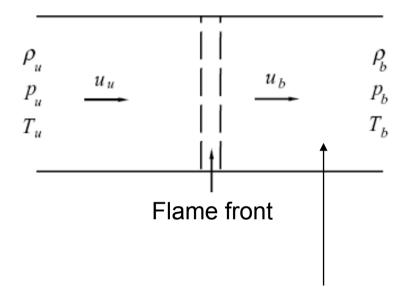
$$Y_{F,b} = 0$$

$$Y_{A,b} = Y_{A,u} - \gamma_A Y_{F,u} = (1 - \Phi) Y_{A,u} = \gamma_A Y_{F,u} \frac{1 - \Phi}{\Phi} = \gamma_A \frac{1 - \Phi}{\Phi + \gamma_A},$$

Both A and P include N

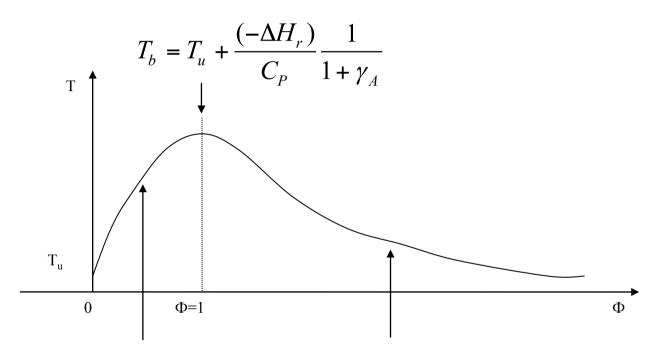
$$Y_{P,b} = 1 - Y_{A,b}$$

Unburned fuel/air mixture



Burned hot products

$$\begin{split} h_u &= Y_{F,u} [h_F^0 + c_{p,F} (T_u - T_{ref})] + Y_{A,u} [h_A^0 + c_{p,A} (T_u - T_{ref})] \\ h_b &= Y_{F,b} [h_F^0 + c_{p,F} (T_b - T_{ref})] + Y_{A,b} [h_A^0 + c_{p,A} (T_b - T_{ref})] + Y_{P,b} [h_P^0 + c_{p,b} (T_b - T_{ref})] \end{split}$$



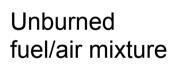
$$T_b = T_u + \frac{(-\Delta H_r)}{c_p} \frac{\Phi}{\Phi + \gamma_A}$$

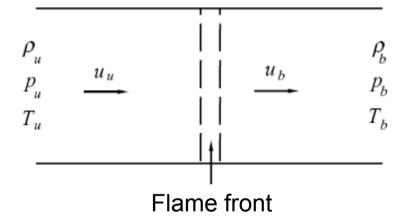
$$T_b = T_u + \frac{(-\Delta H_r)}{C_P} \frac{1}{\Phi + \gamma_A}$$

Laminar burning velocity

- How fast can a laminar flame propagate?
- What is the mechanism of flame propagation?
- What are the influencing factors?

Laminar burning velocity

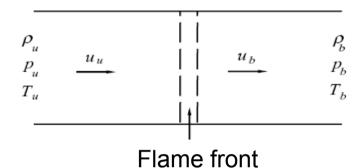




Burned hot products

Laminar burning velocity (also called laminar flame speed): the speed at which the flame front propagates towards the unburned mixture

Unburned fuel/air mixture



Burned hot products

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{\rho \nu} = 0$$

$$\frac{\partial \rho Y_{i}}{\partial t} + \nabla \cdot \rho Y_{i} \vec{v} = \nabla \cdot \rho D_{i} \nabla Y_{i} + \omega_{i}$$

$$\rho \frac{\partial \vec{v}}{\partial t} + \rho \vec{v} \cdot \nabla \vec{v} = \nabla \cdot (pI + \tau)$$

$$\rho \frac{Dh}{Dt} - \frac{Dp}{Dt} = \nabla \cdot \left(\rho \alpha \nabla h - \rho \alpha \sum_{i=1}^{N} \left(1 - \frac{1}{Le_i} \right) h_i \nabla Y_i \right) + \dot{Q}_r + \tau : \nabla \vec{v}$$

- -1 D
- steady state
- unity Lewis number
- low Mach number

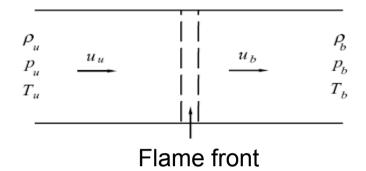
Development of flame speed theory

- Mallard:
 - Ann Mines 7, 355 (1875)
- Mallard & Le Chatelier:
 - Ann Mines 4, 274 (1883)

 Bernard Lewis and G Von Elbe (1937)

- Zeldovich, Frank-Kamenetskii (1938) and Semenov (1940)
- Peters, Seshadri, Williams (1990s)

Unburned fuel/air mixture



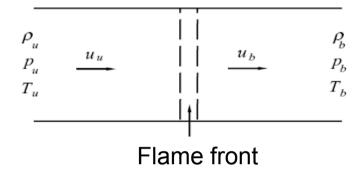
Burned hot products

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{\rho v} = 0$$

$$\frac{\partial \rho Y_{i}}{\partial t} + \nabla \cdot \rho Y_{i} \vec{v} = \nabla \cdot \rho D_{i} \nabla Y_{i} + \omega_{i}$$

- -1 D
- steady state
- unity Lewis number
- low Mach number

Unburned fuel/air mixture



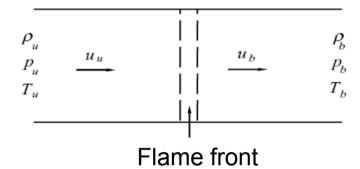
Burned hot products

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \vec{v} = 0$$

$$\frac{\partial \rho Y_i}{\partial t} + \nabla \cdot \rho \vec{v} = \vec{v} \cdot \rho \vec{D}_i \nabla Y_i + \omega_i$$

- -1 D
- steady state
- unity Lewis number
- low Mach number

Unburned fuel/air mixture



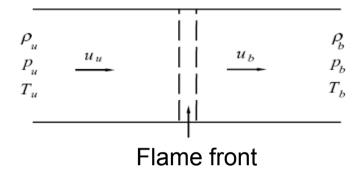
Burned hot products

$$\frac{\partial \rho}{\partial t} + \frac{d\rho u}{dx} = 0$$

$$\frac{\partial \rho Y_i}{\partial t} + \frac{d\rho Y_i u}{dx} = \frac{d}{dx} \left(\rho D_i \frac{dY_i}{dx} \right) + \omega_i$$

- -1 D
- steady state
- unity Lewis number
- low Mach number

Unburned fuel/air mixture



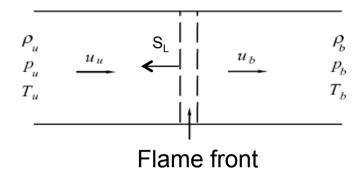
Burned hot products

$$\frac{\partial \rho}{\partial t} + \frac{d\rho u}{dx} = 0$$

$$\frac{\partial \rho Y_i}{\partial t} + \frac{d\rho Y_i u}{dx} = \frac{d}{dx} \left(\rho D \frac{dY_i}{dx} \right) + \omega_i$$

- -1 D
- steady state
- unity Lewis number
- low Mach number

Unburned fuel/air mixture



Burned hot products

$$\frac{\partial \rho}{\partial t} + \frac{d\rho u}{dx} = 0$$

$$\Rightarrow \rho u = \rho_u S_L = constant$$

- -1 D
- steady state
- unity Lewis number
- low Mach number

$$\frac{\partial \rho Y_i}{\partial t} + \frac{d\rho Y_i u}{dx} = \frac{d}{dx} \left(\rho D \frac{dY_i}{dx} \right) + \omega_i \Rightarrow \rho_u S_L \frac{dY_i}{dx} = \frac{d}{dx} \left(\rho D \frac{dY_i}{dx} \right) + \omega_i$$

$$X \to -\infty$$

$$Y_{p} = 0, \frac{dY_{p}}{dx} = 0$$

$$T_{u}$$

$$Y_{p} = 0, \frac{dY_{p}}{dx} = 0$$

$$T_{u}$$

$$X \to +\infty$$

$$Y_{p} = 0, \frac{dY_{p}}{dx} = 0$$

$$Y_{p} = Y_{p,b}, \frac{dY_{p}}{dx} = 0$$

$$X \to +\infty$$

$$Y_{p} = Y_{p,b}, \frac{dY_{p}}{dx} = 0$$

$$X \to +\infty$$

$$\rho_{\mathrm{u}} S_{\mathrm{L}} \frac{dY_{\mathrm{i}}}{dx} = \frac{d}{dx} \Biggl(\rho D \frac{dY_{\mathrm{i}}}{dx} \Biggr) + \omega_{\mathrm{i}} \\ \Longrightarrow \int\limits_{-\infty}^{+\infty} \Biggl(\rho_{\mathrm{u}} S_{\mathrm{L}} \frac{dY_{\mathrm{i}}}{dx} \Biggr) dx \\ = \int\limits_{-\infty}^{+\infty} \Biggl(\frac{d}{dx} \Biggl(\rho D \frac{dY_{\mathrm{i}}}{dx} \Biggr) + \omega_{\mathrm{i}} \Biggr) dx$$

$$\Rightarrow \rho_{\rm u} S_{\rm L} (Y_{\rm P,b} - 0) = \overline{\omega}_{\rm P} \delta_{\rm L} \Rightarrow S_{\rm L} \propto \Omega \delta_{\rm L}$$

$$X \to -\infty$$

$$Y_{p} = 0, \frac{dY_{p}}{dx} = 0$$

$$P_{u}$$

$$T_{u}$$

$$Y_{p} = V_{p,b}, \frac{dY_{p}}{dx} = 0$$

$$X \to +\infty$$

$$Y_{p} = Y_{p,b}, \frac{dY_{p}}{dx} = 0$$

$$X \to +\infty$$

$$Y_{p} = Y_{p,b}, \frac{dY_{p}}{dx} = 0$$

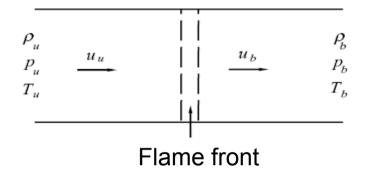
$$X \to +\infty$$

$$Y_{p} = Y_{p,b}, \frac{dY_{p}}{dx} = 0$$

$$\rho_{\mathrm{u}} S_{\mathrm{L}} \frac{dY_{\mathrm{i}}}{dx} = \frac{d}{dx} \Biggl(\rho D \frac{dY_{\mathrm{i}}}{dx} \Biggr) + \omega_{\mathrm{i}} \\ \Longrightarrow \int\limits_{-\infty}^{-\delta_{\mathrm{L}}/2} \Biggl(\rho_{\mathrm{u}} S_{\mathrm{L}} \frac{dY_{\mathrm{i}}}{dx} \Biggr) dx \\ = \int\limits_{-\infty}^{-\delta_{\mathrm{L}}/2} \Biggl(\frac{d}{dx} \Biggl(\rho D \frac{dY_{\mathrm{i}}}{dx} \Biggr) + \omega_{\mathrm{i}} \Biggr) dx$$

$$\Rightarrow \rho_{u} S_{L} (Y_{P,b} / 2 - 0) = \rho D \frac{Y_{P,b} - 0}{\delta_{L}} \Rightarrow S_{L} \delta_{L} \propto D$$

Unburned fuel/air mixture



Burned hot products

$$S_L \sim \sqrt{D\Omega},$$

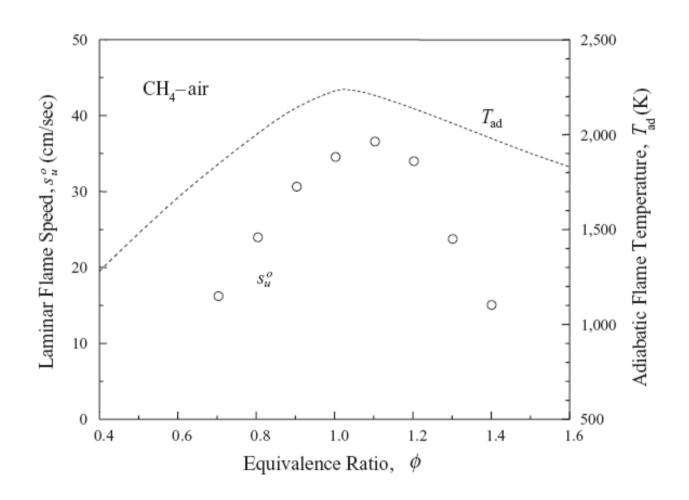
$$\delta_L \sim \sqrt{D/\Omega}$$

D: mass diffusion cofficient [m²/s]

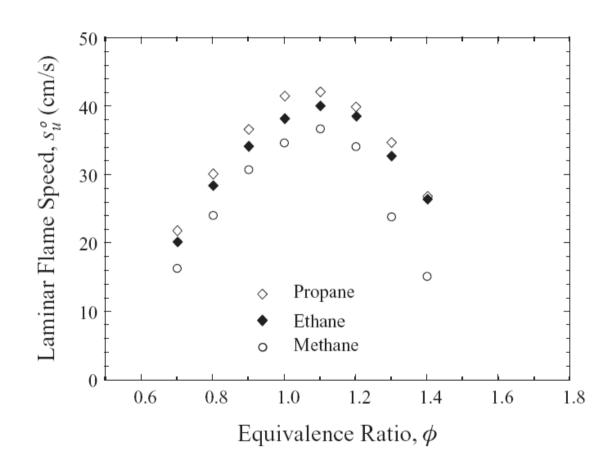
$$\delta_{\rm L} \sim \sqrt{{\rm D}/\Omega}$$

 Ω : reaction rate [1/s]

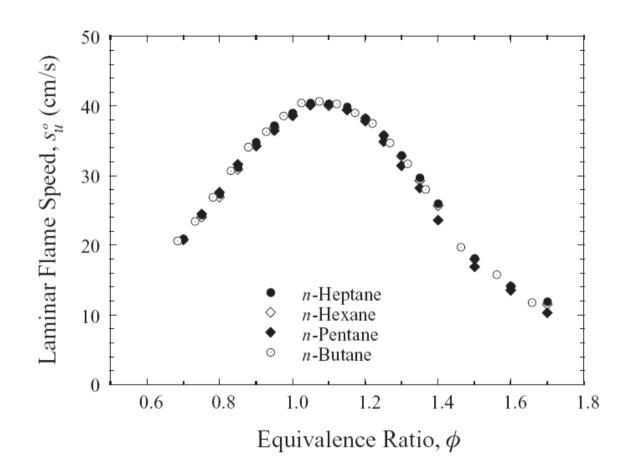
Dependence on fuel/air ratio



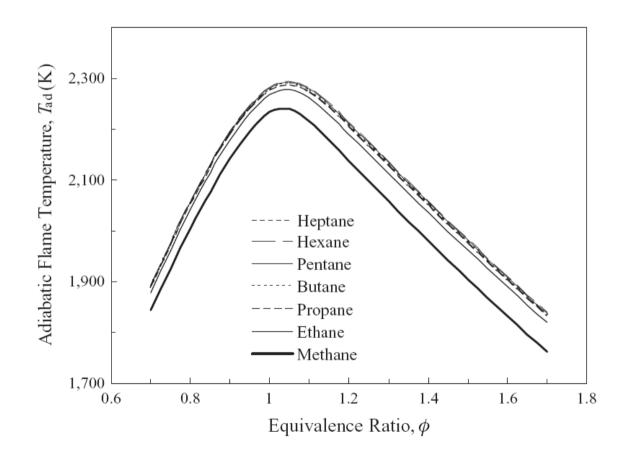
Dependence on flame temperature



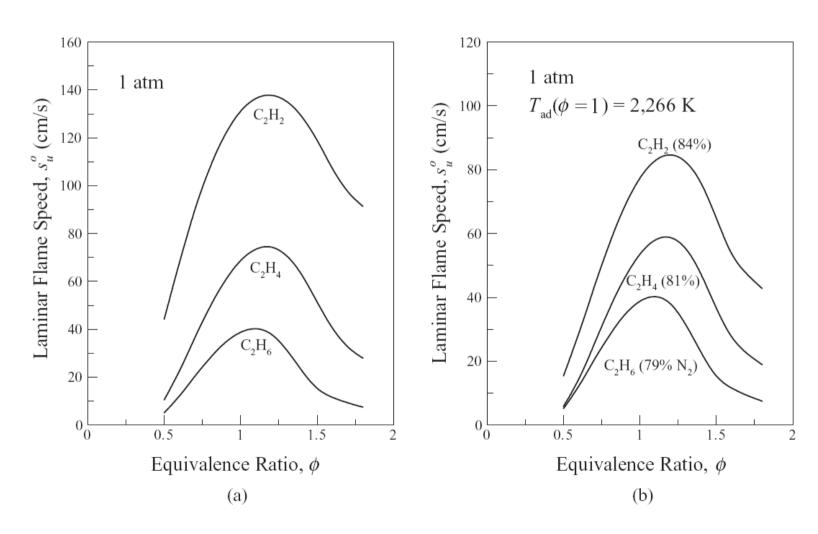
Dependence on flame temperature



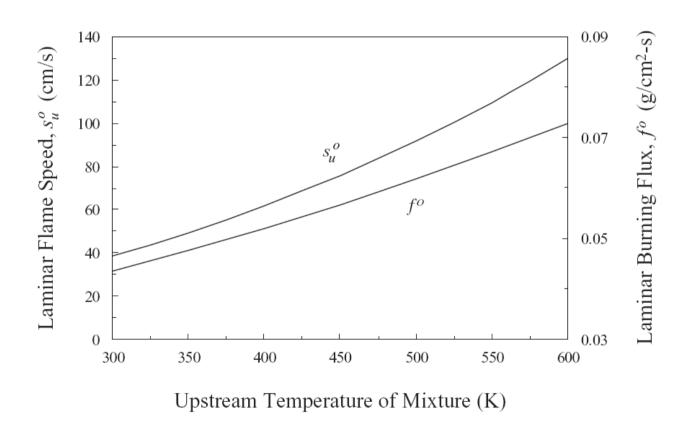
Dependence on flame temperature



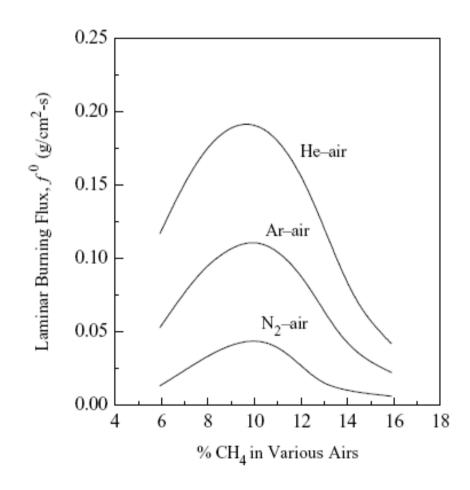
Dependence on reactivity



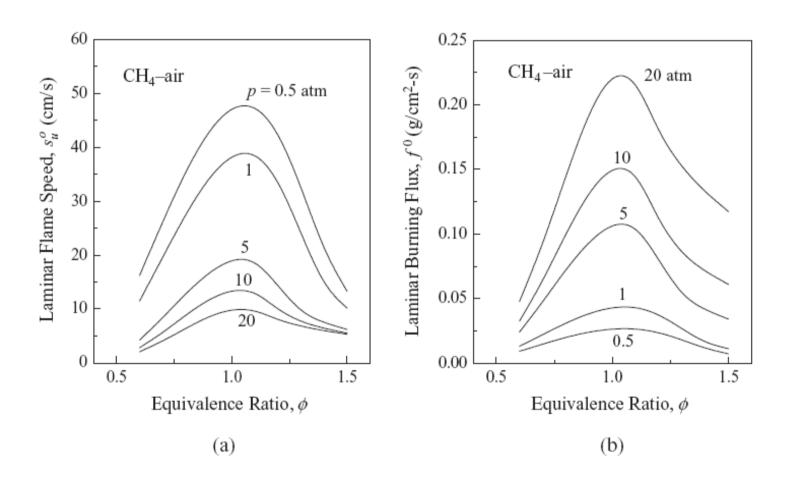
Dependence on preheat temperature



Dependent on transport properties



Dependence on pressure



Syngas/air (CO/H2/air) flames – effect of reactivity and diffusivity

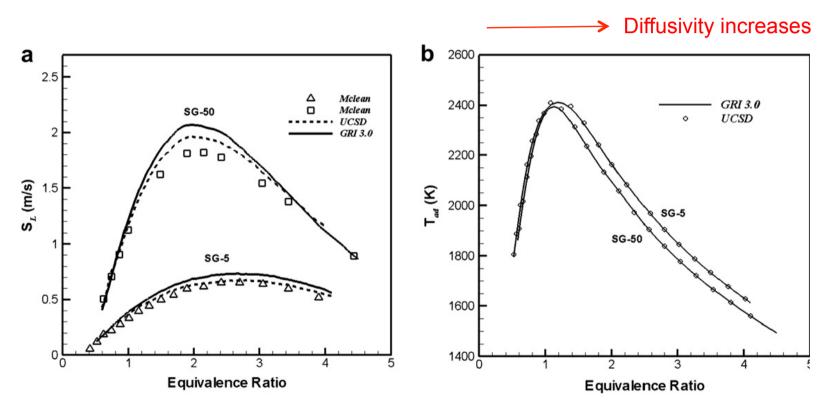
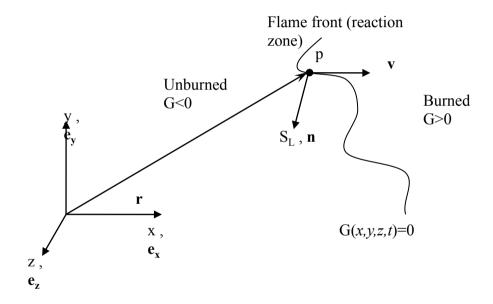


Fig. 10 – Laminar burning velocity and adiabatic flame temperature of syngas flames at atmospheric pressure and mixture temperature of 300 K.

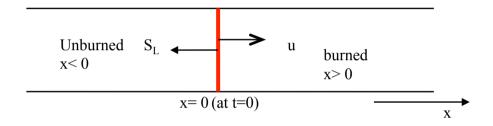
X.S. Bai Laminar Premixed Flames

Propagation of laminar premixed flame



$$\frac{\partial G}{\partial t} + \vec{v} \cdot \nabla G = S_L |\nabla G|$$

Planar flame in a pipe



- Stable flame
- Flash back
- Blow-off
- Wall effect

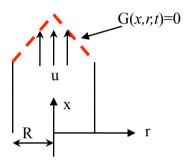
Bunsen flame

$$G(x, r, t) = x + f(r) = 0$$

$$u = S_L \sqrt{(f')^2 + 1}$$

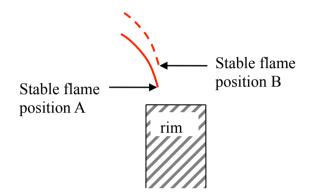
$$f(r) = \sqrt{\frac{u^2 - S_L^2}{S_L^2}} r + \text{constant}$$

$$x = (R - r) \sqrt{\frac{u^2 - S_L^2}{S_L^2}}$$



- Conical shape
- Flame length vs R, u, S_L

Bunsen flame stability



- Rim effect
- Lifted flame
- blowout

Stabilization of premixed flames

- Rim stabilization
- Pilot flame stabilization
- Bluff body stabilization