Renovation and energy efficiency measures of apartment buildings

Åke Blomsterberg
Energy and Building Design
Architecture and the built environment
Lund University

WSP Environmental
Million homes being built in ten years, from 1965 to 1975

- 100,000 apartments need to be renovated (renewal of technical building functions, technical installations and energy use) within the next five years.
- A total of 320,000 require more or less extensive renovation.
- An excellent opportunity to make these homes more energy-efficient.
- 200,000 apartments have been renovated, few of them energy improved.
Average energy use for heating and hot water in apartment blocks in 2010
Number of low energy buildings

<table>
<thead>
<tr>
<th>Year of construction</th>
<th>Number of LEB apartments built</th>
<th>Number of apartments converted to LEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>68</td>
<td>101</td>
</tr>
<tr>
<td>2006</td>
<td>924</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>490</td>
<td>709</td>
</tr>
<tr>
<td>2010</td>
<td>1224</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>3229</td>
<td>810</td>
</tr>
</tbody>
</table>

Åke Blomsterberg, 2013-05-13
Brogården, Alingsås, Sweden

Energy concept: renovation to nearly passive house standard.

Background for the renovation – reasons
The goal was to renovate the buildings because of wear and tear:
• Improve on the poor thermal comfort
• Take care of moisture problems in the base plate
• Renovate the façade because of poor quality bricks
• Replace the radiators
• Improve the poor energy efficiency

Before renovation.
Building envelope, heating, ventilation, cooling and lighting systems before the energy renovation

- The apartments have good floor plans, with generous and easily furnished rooms.

Building envelope
- Walls: Wooden studs, 95 mm insulation and façade bricks.
- Basement: cast-in-situ concrete walls without any insulation.
- Roof: 300 mm insulation on roof slab.
- Windows: double-pane
- The apartments: drafty and poor indoor thermal comfort due to leaky facades.
- The balconies constitute thermal bridges.
- The façade bricks are partly destroyed by moisture.

Architecturally preserve the impression of the façade e.g. the yellow brick façade.

Heating, ventilation, cooling and lighting systems before retrofit
- District heating with radiators under the windows.
- Domestic hot water heated by district heating.
- District heating is renewable to 98%.
- The apartments are ventilated by mechanical exhaust with air intake through window vents.

Before renovation
Energy renovation features

Energy saving concept

Necessary renovation + upgrade to nearly passive house standard. The total investment cost was 14,000 SEK/m² out of which 3,800 SEK/m² for energy efficiency measures.

Building

• Replacing the infill walls with well insulated new facades
• Adding thermal insulation to the gables, the roof and the base plate
• Improving the airtightness from 2 l/sm² to 0.2 l/sm² at 50 Pa.
• Replacing the windows with triple pane windows.
• Incorporating the balconies with the living rooms to eliminate thermal bridges and building new balconies supported by columns

Systems

Heating: Replacing the radiators with heating coils in the supply air

Ventilation: Installation of decentralized balanced ventilation systems with heat recovery

<table>
<thead>
<tr>
<th>U-values</th>
<th>Before renovation</th>
<th>After renovation</th>
<th>After renovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior walls</td>
<td>0.30</td>
<td>0.11 W/m²K</td>
<td>Altogether 480 mm thermal insulation. Adding 430 mm of thermal insulation to the gables</td>
</tr>
<tr>
<td>Roof</td>
<td>0.22</td>
<td>0.13 W/m²K</td>
<td>Adding 400 mm of thermal insulation to the roof</td>
</tr>
<tr>
<td>Base plate</td>
<td>0.38</td>
<td>0.16 W/m²K</td>
<td>Adding 60 mm of EPS</td>
</tr>
<tr>
<td>Windows, average</td>
<td>2.00</td>
<td>0.85 W/m²K</td>
<td>Triple pane</td>
</tr>
<tr>
<td>Doors</td>
<td>2.7</td>
<td>0.75 W/m²K</td>
<td></td>
</tr>
</tbody>
</table>
Achieved Energy Savings

Energy consumption before and after, BBR2012 is building code requirement for new construction

- Before
- BBR2012
- After

- Total energy
- Heating
- Hot water
- Facility electricity
- Fan electricity

Nice looking buildings with new balconies

During reconstruction the building was covered by a tent.
Overall improvements, experiences and lessons learned

Energy
Annual savings 100 kWh/m².

Indoor climate
• Improved thermal comfort
• Improved indoor air quality

Economics
The client divided the costs in three parts;
1) Energy saving measures,
2) Improved standard of the apartments paid for by the tenants (5 m² larger living rooms, renovated bathrooms etc.)
3) The maintenance cost for the buildings, in any case needed.
The energy saving investment paid back in 10 years.

Non-energy benefits
• New balconies
• Larger living rooms
• Better indoor climate

Main conclusions
Passive house technology for renovation requires that all competence work together from the start.
It is possible to renovate a million programs’ home to a very low energy use using traditional materials and common contractors.
It is an advantage to use standard material in standard sizes.
Purchaser group apartment buildings

Technical procurements
• Heat recovery on ventilation
• Rational additional thermal insulation
• Heat recovery on sewage water

Demonstration projects
• Reliable renovation: six apartment building – cost efficient halving of energy use
• Halve-more: 35 pilot studies for energy efficient renovation of apartment buildings.

Åke Blomsterberg, 2013-05-13
Conclusions

• Combine necessary renovation with energy efficiency measures
• Combine energy efficiency measures
• The products and concepts are there

Advantages:
• Improved thermal comfort
• Improved indoor air quality
• Increased property value?
• Reduced energy costs

Potential problems:
• Financing of investments?
• Increased rents?
• Evacuation of occupants?

Åke Blomsterberg, 2013-05-13