Solutions and parenteral products

Alton Chapter 3,5,6,25,43

Questions for exam

How to send in questions eval.ced.lu.se/eval/pub/267463/default.asp Good examples for yesterdays lectures

- How can you use the Classification of drug substances as a guideline to determine what type of drug formulation to develop?
- Discuss with each other other examples of good questions

Formulations that are solutions

- · Injectabilia
 - > Free of particles
 - > Sterile, osmolality
- Eyedrops
 - > Viscosity
- Nasal sprays and nebulizers
 - Drop size
 - > Viscosity
- Oral solutions
 - > Taste and viscosity
- Topical solutions

Why use solutions?

- · Fast uptake No release concerns
- The delivery route demands a solution
- Easy to administrate to unconscious patients or patients with problems to swallow
- Easy to individualise dose

What characterises solutions

Colligative properties

- ➤ Osmolality
- > Freeze point depression
- > Vapour pressure

Ionic strength

- ➤ Osmolality
- ➤ Electrostatic
- > Stability of the active components

pН

- ➤ Solubility
- > Irritation
- > Stability of the active components

Flow properties: rheology

- > Injectability
- > Bioavailability
- > Stability of dispersions and foams

Surface tension

- > Bioavailability
- > Stability of dispersions and foams

organoleptic properties

- > Taste
- Mouth feel

Other characteristics

- > Colour
- > Transparency

Osmolality

Definition

The osmotic pressure of a solution is the external force that needs to be applied to prevent dilution of the solution by entry of solution

∏=n*RT/V
n=moles of solute components

Osmotic differences can cause

- > Haemolysis
- > Exomosis
- > Skin irritation
- •Hypotonic solutions< blood
- ·Hypertonic solutions>blood
- •Isotonic solutions= blood $240\ \mathrm{to}\ 340\ \mathrm{mOmsm}$.

lonic strength

Definition

$$I = \frac{1}{2} \sum C_i * z_i^2$$

If you have a buffer what will change its ionic strength?

Ionic strength effects electrostatics and thus:

- > The structure of polymers
- **➤** Adsorption
- ➤ Solubility
- The stability of colloidal solutions and foams

рΗ

Effects on active components

- > Stability
- ➤ Uptake

Effects on other excipients

- **∞Influence on**
- electrostatics

Effects on patient

- Skin irritation
- **∞Pain**

Effects microbiology Effects osmolality

Surface tension and surface free energy

Definition

The amount of work needed to increase the surface area by one unit.

Effects:

- Surface tension reduction is the driving force for adsorption to interfaces.
- · Drop size of sprays
- Foam formation
- Formation and stabilisation of emulsion
- · Wetting of powders
- Film coating
- Dissolution

Solvents commonly used in pharmaceutical preparations

- Water
 - ➤ Purified water (RO)
 - ➤ Water for injection (Distilled)
 - Pyrogen free and endotoxin free
 - · Have low conductivity
 - Have low amounts of organic molecules
- Cosolvents
 - They increase solubility of other substances by lowering dielectric constant of water
 - Ethanol, propylenglycol, and glycerol
- Buffers

- Other solvents
 - > Hydrophilic ones
 - Ethanol
 - · DMSO
 - · Propylene glycol
 - PEG
 - > Hydrophobic ones
 - Oils

Other additives to solutions

- Preservatives
 - > Phenol
 - > Parabens
 - > Benzoic acid
- Colours, flavours, perfumes, and sweetening agents

Salty	Apricot, vanilla,
	liquorice
Bitter	Anise,chocolate, mint
Sweet	Vanilla, fruits, berries
Sour	Citrus fruits, liquorice

- · Reducing agents
 - ➤ Vitamin E
 - > Ascorbic acid
- Density and rheological modifiers
 - > Polymers
- · Sequestering agents
 - > EDTA
- Substances that effect the surface activity
 - > Polymers
 - > Surfactants

Chemical stability of solutions

- Most common degradation pattern
 - > Hydrolysis
 - pH
 - lons
 - > Oxidation
 - pH
 - lons
 - Excipients
 - > Aggregation
 - Concentration

Tricks to increase chemical stability

- > Choice of pH
- Antioxidants (reducing agents)
 - · Sodium bisulphate
 - Ascorbic acid
 - Vitamin E
- > Sequestering agents
 - EDTA
- > Replacing air by an inert gas

Injectabilia: routes of administration

- Intracutaneous or intradermal
- Subcutaneous or hypodermic
- Intramuscular
- Intravascular
- Intracardiac
- Intraspinal
- · Intra-articular
- Ophthalmic

Pharmacokinetics of injectabilia

- Simple solutions
 - > IV>SC>IM
- Delayed release
 - > Choice of the solvent: oil decreases release
 - > Injection of suspensions
 - Controlled- release formulations

Formulation: Patient compliance

- Choice of osmotic pressure of the formulation
 - > IV: Isotonic or hypertonic
 - > SC: Isotonic
 - > IM: Hypertonic
- Skin irritation
 - ➤ Optimal pH≈7
 - For intrathecal, peridural and intracisternal injections pH 7.0-7.6
- Viscosity
 - > Ease of injection

Formulation: Safety

Microbiological safety

- > Bacterial infection
 - · Single-dose products
 - Container integrity
 - Sterilisation procedure
 - Multiple-dose products
 - Container integrity
 - Sterilisation procedure
 - Bactericides
- > Endotoxines
 - Quality control of excipients, including water

Particles

- > Biological risks
 - Inflammatory response
 - Antigenic response
 - Occlusion of blood vessels
- > Sources of particles
 - Excipients
 - Processes
 - Packing materials

Microbiological quality: sterile products

- 100% sterility: difficult to measure: Validation of process and suitable in process tests
- Authorities' definition of sterility is that there is a risk of finding one non sterile product out of a million
- If a product fail sterility testing it has failed if there is not an obvious reason to suspect analytical errors in that case retesting is allowed
- Sterility testing things to consider
- Risk of contamination during testing
 - Conduct the test in a clean room, LAF bench or isolator
 - > Test of the medium
- Risk that antibacterial substances influence preservative tests:
 - Inactivating these by heat for example
 - Filtrating the sample and testing the filter
 - Validate that no interference exists

Microbiologic qualityendotoxin and pyrogen tests

Definitions

- Pyrogen
 - A pyrogen substance gives rise to an elevated body temperature when injected.
- Endotoxins
 - Lipopolysaccharides from the cell walls of Gramnegative bacteria. These are often pyrogens

Testing pyrogens

- Testing products on rabbits
- The Limulus
 Amoebocyte Lysate
 test (LAL)- measures
 gel formation in the
 lyses products of the
 amoebocyte cells of
 the giant horseshoe
 crab

Things to consider regarding formulation of parenteral products

- Types
 - > Solution
 - > Suspension
 - Reconstructed solution, a powder (often lyophilised) plus diluents
 - > Emulsions

- ➤ IV
 - Injection of max 20 ml
 - Infusion of min 250 ml
- > SC and IM
- Small volumes
- Single- or multi dose- container
 - A multi-dose container requires use of bactericides
- Excipients
- Type of packing material

Solutions and suspension

Solutions

- The simplest and thus preferred form
- Risk of low stability of the active compound
- Normally rapid uptake
- Important quality parameters
 - ▶ pH
 - > Osmolality (ionic strength)
 - > Sterility
 - > Content and impurities

Suspensions

- Particles suspended in a solution
- · Not thermodynamilly stable
- Used for substances of low solubility or for controlled released formulations
- Critical parameter the same as for solutions plus particle size

Reconstituted powders + diluent

- · Mainly for biotech products
 - > Increase shelf-life stability
 - Most commonly formulated as a lyophilised powders
- Advantages of lyophilisation
 - > Avoiding high temperatures
 - > Providing a light porous powder
 - > Rather easy to reconstitute
 - > There is no concentration of the solution prior to drying
 - > Can be produced under sterile conditions

- Disadvantages
 - > A hygroscopic product
 - > It is a slow process
 - > It is expensive to adapt to nonaqueous solutions
- · Critical factors
 - > The amount of water remaining
 - > Risk of aggregation
 - Include fillers such as Manitol, Trehalose to avoid this

Emulsions for injection

- Emulsions are used for:
 - Delivery of oily substances via IV
 - ➤ Parenteral nutrition (Intralipid)
 - > Delayed release

Safety

- The ideal sizes for emulsion droplets are 0.5-1.0 μm, equal to the size of chylomicra
- Should not be larger than 3 μm for IV

Excipients for injectabilia and solutions

Common excipients

- Solvents
- Buffers
 - Carbonates
 - ➤ Citrates
 - > Phosphates
- · Isotonic modifiers
 - > Sodium chloride
 - Dextrose

- Special requirements on the excipients
 - > Microbiology
 - > Toxins
- · Limitation on the excipients
 - > Should not be used unless proven valuable
 - Few excipients are accepted for parenteral use
 - Few qualities of excipients conform to the standard set for parenteral use.

Packing material and device

- User compliance
 - > Prefilled syringes
 - Multi- or single- dose containers
 - > Pumps
 - > Needle free delivery
 - Laws in some states in the US that benefits needle-free or safe needle delivery
- Safety
 - Integrity of the packing material
 - Avoiding contamination of the product from packing material
 - Stopping the sharing of needles

Problems connected with needles

- · Difficult for patients to use
- · Dangerous for healthcare professionals employing them
- · Risk of contamination, particularly in Third World countries
 - > 16 million cases of Hep B
 - > 4,5 million cases of Hep C
 - > 150 000 million cases of HIV

One child dies every 10 s due to disease caused by contaminated needles

Needle free delivery

- Principles of needle-free injection
 - Solution or particles are accelerated to a speed sufficient to enable them to penetrate the skin
- Reason for development of needle free injection
 - Easier for patients to handle
 - > Less pain and phobia
 - Avoids the use of contaminated needles
- The pharmacokinetics can be different from that of normal sc

 Write down what you believe is important quality demands on a parenteral formulation?

Terms to know from today's lecture

- iv. = intravenous
- sc = subcutaneous
- im= intramuscular
- · Hypotonic solutions< blood
- · Hypertonic solutions>blood
- Isotonic solutions= blood
- Parenteral formulation: not administrated through the mouth
- Endotoxin and pyrogen: toxins that are especially dangerous for injectabilia
- · Bactericides: substances that kills bacteria

