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•  A swirling stabilized flame 

Chemical kinetics plays important role in flame zone 

Fuel 

air 

air 

Flame zone: 
chemistry rules 

Post flame zone: 
close to chemical 

equilibrium 
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What does chemical kinetics do? 

•  Chemical kinetics deals with  
–  how fast chemical reactions proceed, i.e. reaction 

rates 
–  what chemical reactions occurs in a chemical 

process, i.e. reaction mechanisms 

•  Chemical kinetics is the key to understand 
–  how does a flame propagate 
–  why a flame can be quenched ... 
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•  Elementary reactions 
–  law of mass action 
– Arrhenius expression 

•  Reaction mechanisms 
– detailed mechanism 
–  reduced mechanism 
– global mechanism 

•  H2-O2 explosion, NOX formation 

Outline 
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Elementary reactions 
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Detailed reaction 
mechanisms  
(1) 
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Detailed reaction mechanisms (2) H2+O2 mechanism 

Chain  
initiating 

Chain  
branching 

Chain  
propagating 

Chain  
terminating 
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Elementary reaction (1) 

•  Definition 
–  the actual reaction among individual atoms and/or 

molecules 
•  Types of elementary reactions 

–  uni-molecular reaction (thermal dissociation) 
–  bi-molecular reaction (most of reactions of this 

type) 
–  ter-molecular reaction (recombination reactions) 

•  Physical interpretation of elementary reaction 
–  Collision theory 
–  Activated complex theory 
–  ... 



X.S. Bai        Chemical Kinetics 

Elementary reaction (2)  
Physical interpretation of bimolecular and termolecular reactions (collision theory) 
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Elementary reaction (3) 

•  Physical interpretation of unimolecular reaction 
(activated complex theory) 

A+M A*+M 

A+M A*+M 

A* Products 

M = third body 
    = any molecules 
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Elementary reaction (4) 

•  Physical 
interpretation of 
effect of 
temperature on 
elementary 
reactions 
(collision theory) 
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Elementary reaction (5) 

•  Physical 
interpretation of 
effect of catalysis on 
elementary reactions 
(collision theory) 



X.S. Bai        Chemical Kinetics 

Reaction rate for Elementary reactions (1) 

•  Law of mass action 

H+O2 OH+O 

2

2 )(3 OHf
O CCTk
dt
dC

−=

Rate coef. 
Change rate of  
molar concen. 

Reaction order 

•  Overall order: 2 
•  radicals: molecules/atoms            

 with unpaired electrons 
•  how reaction really proceed? 

Radicals O, OH Radical H 
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Reaction rate for Elementary reaction (2) 

•  Bimolecular reaction 

H+O2 OH+O 
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Activation  
energy •  Arrhenius form often used; 

experimental data is used to 
find model constants A, EA, b 
•  collision theory for rate coef. 
•  Second overall order 

Arrhenius 
expression 
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Reaction rate for Elementary reaction (3) 

•  Unimolecular reaction 

•  Termolecular reaction 

O2 O + O 

Recombination 
of radical H 

Third 
body 

•  third body M carry away energy formed  

Oxygen 
dissociation  

at high p 

2

2 )( Ouni
O CTk
dt
dC

−=

M + H2 H + H + M 
2( )H

ter M H
dC k T C C
dt

= -­‐



X.S. Bai        Chemical Kinetics 

Reaction rate for Elementary reaction (5) 

•  Effect of pressure on reactions rate 

–  at high pressures termolecular reactions become 
more important than bimolecular reactions and 
unimolecular reactions 

nnnnnn ppkYkYkC
dt
dC

∝∝∝∝ ρ
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Reaction rate for Elementary reaction (6) 

•  How to obtain rate coefficients? 
–  Theoretical calculations (difficult) 
–  experiments (mostly used approach) 
–  if the forward reaction rate is known, one can use equilibrium 

constants to calculate the backward reaction, and vice versa. 
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Reaction rate for Elementary reaction (7) 

•  Units used in reaction rate calculation 

nkC
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Kinetic data are often given in 
engineering unit - cm, mole, s, 
etc. (Turns book Table 5.3). If 
you change C to SI unit, do not 
forget to change k to SI unit as 
well. Remember k’s unit is 
different for different reactions. 
Recommendation: use cm,  
mole, s … unit first to 
calculate the rate, then 
translate to SI unit 
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Reaction Mechanisms 
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Reaction mechanisms 

•  Global reaction mechanism models  
–  a combustion process using one, two or a few steps, for 

example one step reaction 
  

•  Detailed reaction mechanism consists of 
–  hundreds elementary reactions, for example methane 

oxidation mechanism listed in Turns book 

•  Reduced mechanism simplifies detailed reaction mechanism by 
reducing the number of elementary reactions 

2H2O 2H2+O2 
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Detailed reaction mechanisms (2) H2+O2 mechanism 

Chain  
initiating 

Chain  
branching 

Chain  
propagating 

Chain  
terminating 
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Detailed 
reaction 
mechanism 
(3) 
- 
H2+O2 
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Reaction rate for 
Elementary reaction (4) 

•  For a detailed reaction mechanism 

•  reaction rates for species i 

Backward 
rate 
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An example: H2-O2 explosion 
a chemical explanation 

•  heterogeneous reaction:  
–  Radicals + Wall        products          (I) 

•  chain initiating   
–  H2 + M       H+H+M    (II) 

•  chain branching and propagating     
–  H+O2       O+OH     (III) 

•  chain terminating 
–  H+O2+M       HO2+M    (IV) 

•  chain branching 
–  HO2 + H         OH+OH       (V) 
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H2-O2 explosion diagram (a sketch) 

pressure 

Tu 500 C 550 C 400 C 

1 atm 

No 
explosion 

explosion 

I dominant 

III dominant 

IV dominant 

V dominant 
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Example 2: CO-O2 reaction 
effect of humidity 

•  CO  + O2   CO2  + O    (I) 
•  O  + H2O   OH  + OH    (II) 
•  CO  + OH          CO2  + H    (III) 
•  H  + O2           OH  + O    (IV) 

–  (I) slow 
–  (III) much faster 
–  (IV) key reaction even for moisture CO combustion!!! 
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CH4-O2 reaction path 

CH4 O2 

CH3 + H 
H 

OH + O 
CH2O + H 

H2 + CH3 
O 

H2 + CH2O 

OH 

CHO + H2 

H 

OH + H 

O 

CO + H2 
H 

CO2 + H 

H2O + H 

OH 



X.S. Bai        Chemical Kinetics 

CH4-O2 reaction mechanism 

•  CH4 + M   CH3 + H + M 
•  CH4 + H   CH3 + H2 
•  CH3 + O   CH2O + H 
•  CH3 + OH   CH2O + H2 
•  CH2O + H   HCO + H2 
•  HCO + H   CO + H2 
•  CO + OH   CO2 + H2 (CO mechanism) 
•  H2 mechanism 
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CnH2n-O2 reaction mechanism (n>1) 

•  H abstract 
•  beta-scission rule 
•  high C break down  
•  to HCO  
•  to CO  
•  to CO2 

C-C bond weaker than C-H bond: C-C 85 kcal/bond; C-H 98 kcal/bond 
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Thermal NO mechanism 

O2 N2 

NO 
+ 
N 

NO 

OH NO + O 

O 

T (K)  NO  formation rate 
 
500  3.50e-45  
1000  2.00e-15  
1500  1.50e-5   
2000  1.34 
2050  3.06 
2100  6.74 
2150  14.35  
2200  29.45 

28

1/ 2 16 1/ 2
26

690902 6 10 expNOk k K T
T
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Fuel NOx formation mechanism 
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Reduced reaction mechanism 

•  How to simplify a detailed reaction mechanism? 
–  Some reactions proceed faster than others. If both the forward and 

backward reactions are fast, one can assume this reaction is in 
partial equilibrium 

–  Some species are in lower concentrations than others. If the net 
formation and destruction rate of this species are small, one may 
assume this species is in steady states. 

–  ILDM (intrinsic low dimensional manifold) 
–  Experimental approach 
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Reaction rate for 
Global reaction mechanism (1) 

•  hydrogen and oxygen reaction 

2H2+O2 2H2O 

n
O

m
H

O CCTk
dt
dC

22
2 )(−=

Rate coef. 
Change rate of  
mole concen. 

Reaction order 

•  Overall order: m+n 
•  m, n can be non-integers 
•  how reaction really proceed? 

[ ] [ ] iii XXiC ρ=≡≡

Mole concen. 
of i 
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Reaction rate for 
Global reaction mechanism (2) 

•  How to determine rate coefficients and m, n? 
–  rate coefficients, m, n are obtained from curve-

fitting with experimental data 
•  Advantages 

–  simple to use 
•  disadvantages 

–  not directly related to the fundamental reaction 
process 

–  rate coefficients, m, n only valid for short range of 
temperature and equivalence ratio 
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Thermal explosion (thermal runaway) 

One step global reaction 

First order reaction 

K. Seshadri, UCSD 

http://nccrd.in/iciwsindia2015 
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Thermal explosion (thermal runaway) 

Heat loss to wall 

Change of fuel mass 
Chemical reaction rate 

Change of  
Sensible energy 

Heat release rate 
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Thermal explosion (thermal runaway) 
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Thermal explosion (thermal runaway) 
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Thermal explosion (thermal runaway) 

•  Critical condition for thermal runaway 
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Thermal explosion (thermal runaway) 
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Hydrogen/air auto-ignition 

Initial temperature 

Ignition delay time H2 + M = H + H + M 

Low T0 

High T0 

thermal runaway 
and radical runaway 

Induction period 
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Hydrogen/air auto-ignition 

Ignition delay time of H2/air mixture 

rpm CAD time 
1000 30 5 ms 
2000 30 2.5 ms 
3000 30 1.25 ms 

Combustion duration 

From Fan Zhang, Yajing Wu 
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n-heptane-air auto-igntion 

From N. Peters, 15 lectures, 1992 


