

Chemical kinetics plays important role in flame zone

What does chemical kinetics do?

- Chemical kinetics deals with
 - how fast chemical reactions proceed, i.e. reaction rates
 - what chemical reactions occurs in a chemical process, i.e. reaction mechanisms
- Chemical kinetics is the key to understand
 - how does a flame propagate
 - why a flame can be quenched ...

Outline

- Elementary reactions
 - law of mass action
 - Arrhenius expression
- Reaction mechanisms
 - detailed mechanism
 - reduced mechanism
 - global mechanism
- H₂-O₂ explosion, NO_X formation

Detailed reaction mechanisms (2) H₂+O₂ mechanism

Chain initiating

The initiation reactions are:

$$H_2 + M \rightarrow H + H + M$$
 (very high temperatures) (H.1)

$$H_2 + O_2 \rightarrow HO_2 + H$$
 (other temperatures). (H.2)

Chain-reaction steps involving O, H, and OH radicals are:

$$H + O_2 \rightarrow O + OH$$
 (H.3)

(H.4)

$$O + H_2 \rightarrow H + OH$$

Chain propagating

$$H_2 + OH \rightarrow H_2O + H$$
 (H.5)

$$O + H_2O \rightarrow OH + OH$$
. (H.6)

Chain-terminating steps involving O, H, and OH radicals are the three-body recombination reactions,

Chain terminating

$$H + H + M \rightarrow H_2 + M$$
 (H.7)

$$O + O + M \rightarrow O_2 + M$$
 (H.8)

$$H + O + M \rightarrow OH + M$$
 (H.9)

$$H + OH + M \rightarrow H_2O + M$$
. (H.10)

Elementary reaction (1)

- Definition
 - the actual reaction among individual atoms and/or molecules
- Types of elementary reactions
 - uni-molecular reaction (thermal dissociation)
 - bi-molecular reaction (most of reactions of this type)
 - ter-molecular reaction (recombination reactions)
- Physical interpretation of elementary reaction
 - Collision theory
 - Activated complex theory

— ...

Elementary reaction (3)

 Physical interpretation of unimolecular reaction (activated complex theory)

Elementary reaction (4)

Physical interpretation of effect of temperature on elementary reactions (collision theory)

FIGURE 18.18 The fraction of molecules that collide with a kinetic energy that is at least equal to the activation energy, $E_{\rm a}$, is denoted by the shaded areas under each curve. The fraction increases rapidly as the temperature is raised.

Elementary reaction (5)

Reaction rate for Elementary reactions (1)

Reaction rate for Elementary reaction (2)

Reaction rate for Elementary reaction (3)

Reaction rate for Elementary reaction (5)

Effect of pressure on reactions rate

$$\frac{dC}{dt} \propto kC^n \propto kY^n \rho^n \propto kY^n p^n \propto p^n$$

 at high pressures termolecular reactions become more important than bimolecular reactions and unimolecular reactions

Reaction rate for Elementary reaction (6)

- How to obtain rate coefficients?
 - Theoretical calculations (difficult)
 - experiments (mostly used approach)
 - if the forward reaction rate is known, one can use equilibrium constants to calculate the backward reaction, and vice versa.

Reaction rate for Elementary reaction (7)

Units used in reaction rate calculation

Kinetic data are often given in engineering unit - cm, mole, s, etc. (Turns book Table 5.3). If you change C to SI unit, do not forget to change k to SI unit as well. Remember k's unit is different for different reactions. Recommendation: use cm, mole, s ... unit first to calculate the rate, then translate to SI unit

Reaction mechanisms

- Global reaction mechanism models
 - a combustion process using one, two or a few steps, for example one step reaction

$$2H_2+O_2 \longrightarrow 2H_2O$$

- Detailed reaction mechanism consists of
 - hundreds elementary reactions, for example methane oxidation mechanism listed in Turns book
- Reduced mechanism simplifies detailed reaction mechanism by reducing the number of elementary reactions

Detailed reaction mechanisms (2) H₂+O₂ mechanism

Chain initiating

The initiation reactions are:

$$H_2 + M \rightarrow H + H + M$$
 (very high temperatures) (H.1)

$$H_2 + O_2 \rightarrow HO_2 + H$$
 (other temperatures). (H.2)

Chain-reaction steps involving O, H, and OH radicals are:

$$H + O_2 \rightarrow O + OH$$
 (H.3)

(H.4)

$$O + H_2 \rightarrow H + OH$$

Chain propagating

$$H_2 + OH \rightarrow H_2O + H$$
 (H.5)

$$O + H_2O \rightarrow OH + OH$$
. (H.6)

Chain-terminating steps involving O, H, and OH radicals are the three-body recombination reactions,

Chain terminating

$$H + H + M \rightarrow H_2 + M$$
 (H.7)

$$O + O + M \rightarrow O_2 + M$$
 (H.8)

$$H + O + M \rightarrow OH + M$$
 (H.9)

$$H + OH + M \rightarrow H_2O + M$$
. (H.10)

hydroperoxy radical, and H₂O₂, hydrogen peroxide. When

$$H + O_2 + M \rightarrow HO_2 + M \tag{H.11}$$

becomes active, then the following reactions, and the reverse of H.2 come into play:

$$HO_2 + H \rightarrow OH + OH$$
 (H.12)

$$HO_2 + H \rightarrow H_2O + O$$
 (H.13)

$$HO_2 + O \rightarrow O_2 + OH$$
 (H.14)

and

$$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$$
 (H.15)

$$HO_2 + H_2 \rightarrow H_2O_2 + H$$
 (H.16)

with

$$H_2O_2 + OH \rightarrow H_2O + HO_2$$
 (H.17)

$$H_2O_2 + H \rightarrow H_2O + OH$$
 - (H.18)

$$H_2O_2 + H \rightarrow HO_2 + H_2$$
 (H.19)

$$H_2O_2 + M \rightarrow OH + OH + M$$
. (H.20)

Detailed reaction mechanism (3)

 H_2+O_2

X.S. Bai Chen

Reaction rate for Elementary reaction (4)

· For a detailed reaction mechanism

$$\sum_{i=1}^{N} \nu'_{ij} M_i \Leftrightarrow \sum_{i=1}^{N} \nu''_{ij} M_i \qquad j=1,\dots,L$$

reaction rates for species i

$$\omega_{i} = \sum_{di} \left(\sum_{i,j=1}^{N} \left(\sum_{$$

An example: H₂-O₂ explosion a chemical explanation

H₂-O₂ explosion diagram (a sketch)

Example 2: CO-O₂ reaction effect of humidity

CH₄-O₂ reaction path

CH₄-O₂ reaction mechanism

C_nH_{2n} - O_2 reaction mechanism (n>1)

Thermal NO mechanism

Fuel NO_x formation mechanism

Reduced reaction mechanism

- How to simplify a detailed reaction mechanism?
 - Some reactions proceed faster than others. If both the forward and backward reactions are fast, one can assume this reaction is in partial equilibrium
 - Some species are in lower concentrations than others. If the net formation and destruction rate of this species are small, one may assume this species is in steady states.
 - ILDM (intrinsic low dimensional manifold)
 - Experimental approach

Reaction rate for Global reaction mechanism (1)

Reaction rate for Global reaction mechanism (2)

- How to determine rate coefficients and m, n?
 - rate coefficients, m, n are obtained from curvefitting with experimental data
- Advantages
 - simple to use
- disadvantages
 - not directly related to the fundamental reaction process
 - rate coefficients, m, n only valid for short range of temperature and equivalence ratio

- ▶ Chemical Reaction: Reactants → Products One step global reaction
- Molar rate of consumption of fuel per unit volume

$$w = BC_{F,u}\phi \exp[-E/(RT)]$$
 First order reaction

where $\phi = C_{\rm F}/C_{\rm F,u}$, $C_{\rm F}$ the concentration of fuel, $C_{\rm F,u}$ the initial concentration of fuel, and T the temperature.

Balance equation for fuel

Change of fuel mass
$$\longrightarrow V \frac{d\phi}{dt} = -VB\phi \exp\left(-\frac{E}{RT}\right)$$
 Chemical reaction rate

where V is the volume of the vessel.

Energy balance

Heat release rate

Heat loss to wall

Change of Sensible energy
$$\rho c_v V \frac{dT}{dt} = VQ_F B C_{F,u} \phi \exp\left(-\frac{E}{RT}\right) - hS(T - T_w)$$

where $Q_{\rm F}$ is the heat release per mole of fuel consumed, h the heat transfer coefficient, S the surface area of the vessel, and $T_{\rm w}$ the wall temperature.

Initial conditions at t=0 are

$$\phi = 1$$
, $T = T_{\rm w}$

Define

$$au = rac{t}{t_c}, \; heta = rac{T - T_{
m w}}{\epsilon T_{
m w}}$$

where

$$t_c = \frac{V \rho c_v}{Sh} = \text{time for cooling}$$

 $\epsilon = \frac{RT_w}{E} = \frac{\text{thermal energy at wall temperature}}{\text{activation energy}}$

 $\epsilon \ll 1$. Define a quantity $\gamma \ll 1$ as

$$\gamma = \frac{\rho c_v T_w}{Q_F C_{F,u}} = \frac{\text{thermal energy at wall temperature}}{\text{heat release}}.$$

The parameter δ is given by

$$\delta = (\gamma \epsilon)^{-1} t_c B \exp\left(-\frac{E}{RT_w}\right) = \frac{\text{cooling time}}{\text{reaction time}}.$$

The quantity δ is of the order of unity.

The nondimensional describing equations are

Balance equation for fuel

$$rac{d\phi}{d au} = -\epsilon\gamma\delta\phi ext{exp}\left(rac{ heta}{1+\epsilon heta}
ight).$$

Energy balance

$$rac{d heta}{d au} = \delta\phi ext{exp}\left(rac{ heta}{1+\epsilon heta}
ight) - heta$$

Initial conditions at $\tau = 0$ are

$$\phi = 1$$
, $\theta = \theta_0 = (T_{\rm u} - T_{\rm w})/(T_{\rm w}\epsilon)$.

If $\delta\gg e^{-1}$, heat loss term can be neglected because it is of the order of δ^{-1} . With the definition $\hat{\tau}=\delta\tau$, the energy conservation equation is

$$\frac{d\theta}{d\hat{ au}} = \exp(\theta)$$

The initial condition at $\hat{\tau} = 0$ is $\theta = 0$. Solution to the energy equation is

$$heta = - \mathsf{ln} \, (1 - \hat{ au}).$$

At $\hat{\tau} = 1$, $\theta \rightarrow \infty$. Thus the ignition delay time t_e is given by

$$t_{\mathrm{e}} = \frac{
ho c_{\mathrm{v}} R T_{\mathrm{w}}^{2}}{E Q_{\mathrm{F}} B} \mathrm{exp} \left(\frac{E}{R T_{\mathrm{w}}} \right)$$

Hydrogen/air auto-ignition

Hydrogen/air auto-ignition

$$\begin{array}{cccc} H + O_2 & \rightarrow & OH + O \\ O + H_2 & \rightarrow & OH + H \\ OH + H_2 & \rightarrow & H_2O + H \\ H + O_2 + M & \rightarrow & HO_2 + M \\ H_2 + O_2 & \rightarrow & H + HO_2 \,. \end{array}$$

Combustion duration

rpm	CAD	time
1000	30	5 ms
2000	30	2.5 ms
3000	30	1.25 ms

Ignition delay time of H2/air mixture From Fan Zhang, Yajing Wu

n-heptane-air auto-igntion

Fig. 4.6: Comparison of calculated ignition delay times for stoichiometric n-heptane-air mixtures by a full kinetic mechanism of 1011 elementary reactions with experimental data [4.4] at 40 atm.