Lecture 12. Modeling of Turbulent Combustion
Content

- direct numerical simulation (DNS)

- Statistical approach (RANS)
 - Modeling of turbulent non-premixed flames
 - Modeling of turbulent premixed flames

- Large eddy simulation
Direct Numerical Simulation: DNS

- Solve the entire set of governing equations
 - Down to the smallest flow scales
 - Down to the fine reaction zones

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0, \]

\[\frac{\partial \rho Y_i}{\partial t} + \frac{\partial \rho u_j Y_i}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D_{ij} \frac{\partial Y_i}{\partial x_j} \right) + \omega_i, \quad i = 1, \ldots, N \]

\[\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = \nabla \cdot \left(p \mathbf{I} + \tau \right), \quad (i = 1, 2, 3) \]

\[p = \rho \frac{1}{W_{\text{mix}}} R_u T, \]

\[h = \sum_{i=1}^{N} Y_i \left(u_{si} + u_{ci} + \frac{p}{\rho} \right) = \sum_{i=1}^{N} Y_i h_i \]

\[\nabla X_i = \sum_{j=1}^{N} X_i X_j \left(\nabla \tilde{V}_j - \nabla \tilde{V}_i \right) + (Y_i - X_i) \frac{\nabla p}{p} + \frac{\rho}{p} \sum_{j=1}^{N} Y_i Y_j (f_i - f_j) \]

\[h_i = u_{si} + u_{ci} + \frac{p}{\rho} = \int_{T_{\text{ref}}}^{T} c_p dT + h^0_{f,i}(T_{\text{ref}}) \]
Principles of DNS

- Governing equations (N+5, N+4)
 - Continuity equation, 1
 - Momentum equations, 3
 - Species transport equations, N (number of species)
 - Enthalpy transport equation, 1
 - Equation of state, 1
 - Calorific equation of state, 1
 - Transport coefficients, N+2
- Independent variables to be simulated (2N+9)
 - Density, pressure, temperature, 3
 - Velocity components, 3
 - Species mass fractions, N
 - Enthalpy, 1
 - Transport coefficients, N+2
Principles of DNS

• Fully resolving all flow scales
 – Kolmogrov scales: length, time, velocity
 – All flame scales: reaction zones
Principles of DNS

• Fully resolving all flow scales
 – Kolmogrov scales: length, time, velocity
 – All flame scales: reaction zones
Cost of DNS to resolve one large eddy

\[
\frac{l_0}{\eta} \propto \text{Re}_{l_0}^{3/4}; \\
\frac{v_0}{v_\eta} \propto \text{Re}_{l_0}^{1/4}; \\
\frac{\tau_0}{\tau_\eta} \propto \text{Re}_{l_0}^{1/2};
\]

Assuming the smallest grid is \(\eta \) and smallest time step is \(\tau_\eta \),

Computational cost for 1-D \(\sim \frac{l_0}{\eta} \frac{\tau_0}{\tau_\eta} \sim \text{Re}_{l_0}^{5/4} \)

Computational cost for 1-D \(\sim \left(\frac{l_0}{\eta} \right)^2 \frac{\tau_0}{\tau_\eta} \sim \text{Re}_{l_0}^2 \)

Computational cost for 1-D \(\sim \left(\frac{l_0}{\eta} \right)^3 \frac{\tau_0}{\tau_\eta} \sim \text{Re}_{l_0}^{11/4} \)
Cost of DNS to resolve one large eddy

Total number of spatial mesh points x time steps needed for resolving one large eddy scales of flames with different spatial dimensions and Reynolds numbers

<table>
<thead>
<tr>
<th>Re_ℓ_0</th>
<th>1-D</th>
<th>2-D</th>
<th>3-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>17.8</td>
<td>100</td>
<td>562</td>
</tr>
<tr>
<td>100</td>
<td>316</td>
<td>10,000</td>
<td>316,227</td>
</tr>
<tr>
<td>1000</td>
<td>5623</td>
<td>1,000,000</td>
<td>177,827,900</td>
</tr>
<tr>
<td>10,000</td>
<td>100,000</td>
<td>100,000,000</td>
<td>100,000,000,000</td>
</tr>
</tbody>
</table>

- DNS with detailed chemistry for an SI engine takes 30 years
- DNS is used for 2D
- DNS is used for low Reynolds number flames
DNS of hydrogen flame, Mizobuchi et al, 29th symp

H2 Jet flame: 9 species, 17 reactions, 30Dx30D, 22.8 million grids
N.F.I.: normalized flame index – square of concentration gradient
Statistical methods (SM): Ensemble Averages and Modeling

(Reynolds averaged Navier-Stokes equations: RANS)
Principles of ensemble averages

- Turbulent flame is a random process
- Only the statistical mean field is solved
Ensemble average

Reynolds decomposition: $u = \bar{u} + u'$, $\bar{u} = \frac{1}{M} \sum_{m=1}^{M} u_m$

Favre decomposition: $u = \bar{u} + u''$, $\bar{u} = \frac{\rho u}{\bar{\rho}}$
Cost of Statistical Methods to resolve one large eddy

Total number of spatial mesh points x time steps needed for resolving one large eddy scales of flames with different spatial dimensions and Reynolds numbers

<table>
<thead>
<tr>
<th>Re_{ℓ_0}</th>
<th>1-D</th>
<th>2-D</th>
<th>3-D</th>
<th>SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>17.8</td>
<td>100</td>
<td>562</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>316</td>
<td>10,000</td>
<td>316227</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>5623</td>
<td>1000,000</td>
<td>177,827,900</td>
<td>1</td>
</tr>
<tr>
<td>10,000</td>
<td>100,000</td>
<td>100,000,000</td>
<td>100,000,000,000</td>
<td>1</td>
</tr>
</tbody>
</table>
Governing equations for the mean flame

Mass: \[\frac{\partial \bar{\rho}}{\partial t} + \frac{\partial \bar{\rho} \bar{u}_j}{\partial x_j} = 0 \]

Momentum: \[\frac{\partial \bar{\rho} \bar{u}_i}{\partial t} + \frac{\partial \bar{\rho} \bar{u}_i \bar{u}_j}{\partial x_j} = - \frac{\partial \bar{p}}{\partial x_i} - \frac{\partial \bar{\rho} u_i^\prime u_j^\prime}{\partial x_j} \]

Species: \[\frac{\partial \bar{\rho} \bar{Y}_i}{\partial t} + \frac{\partial \bar{\rho} \bar{u}_i \bar{Y}_i}{\partial x_j} = - \frac{\partial}{\partial x_j} \left(\bar{\rho} u_i^\prime \bar{Y}_i^\prime \right) + \bar{\omega}_i \]

Energy equation: similar as above
Modeling issues

\[\frac{\partial \rho \tilde{Y}_i}{\partial t} + \frac{\partial \rho \tilde{Y}_i u_j}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D_i \frac{\partial \tilde{Y}_i}{\partial x_j} \right) + \frac{\partial}{\partial x_j} \left(-\rho Y_i'' u_j'' \right) + \bar{\omega}_i \]

Turbulent transport flux

Turbulent reaction rate

Turbulence models
 e.g. K-epsilon model

Combustion models

X.S. Bai

Modeling of TC
Modeling of Turbulent Non-premixed flames

- Flame sheet model
- Flamelet models
- Eddy dissipation concept model
- Conditional moment closure models
- Probability density function models
Turbulent Combustion of a fuel jet
Presumed PDF Burke-Schumann model
Burke-Schumann flame sheet model

- In 1970s Bilger advocated - in diffusion flames there is such as ‘magic’ variable called mixture fraction (Z). All the species mass fractions, temperature, density etc, are uniquely related to Z …
- Burke-Schumann were the first one found this magic relationship

\[
Y_F = \begin{cases}
\frac{Z - Z_{st}}{1 - Z_{st}} & Z \geq Z_{st} \\
0 & Z < Z_{st}
\end{cases} \quad
Y_{O2} = \begin{cases}
0.233\left(1 - \frac{Z}{Z_{st}}\right) & Z \leq Z_{st} \\
0 & Z > Z_{st}
\end{cases} \\
Y_P = \begin{cases}
\frac{1 - Z}{1 - Z_{st}} & Z \geq Z_{st} \\
Z / Z_{st} & Z < Z_{st}
\end{cases} \quad
T = \begin{cases}
\frac{1 - Z}{1 - Z_{st}}\left(T_{st} - T_{Fu}\right) + T_{Fu} & Z \geq Z_{st} \\
Z / Z_{st}\left(T_{st} - T_{Ou}\right) + T_{Ou} & Z < Z_{st}
\end{cases}
\]
Ensemble average of flame sheet in turbulent flows

\[Z = \frac{1}{N} \sum_{i=1}^{N} Z(t_i) = \frac{1}{N} \sum_{m=1}^{M} n(Z_m) Z_m = \sum_{m=1}^{M} \frac{n(Z_m)}{N \Delta Z} Z_m \Delta Z = \int_0^1 p(Z) Z dZ \]

\[\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y(Z(t_i)) = \frac{1}{N} \sum_{m=1}^{M} n(Z_m) Y(Z_m) = \sum_{m=1}^{M} \frac{n(Z_m)}{N \Delta Z} Y(Z_m) \Delta Z = \int_0^1 p(Z) Y(Z) dZ \]

Measurement at a flow field point

Probability density function: pdf
Presumed PDF: \[p(Z) = \frac{Z^a (1-Z)^b}{\int_0^1 Z^a (1-Z)^b \, dZ} \]

\[\bar{Z} = \int_0^1 Z p(Z) \, dZ, \quad g = (Z - \bar{Z})^2 = \int_0^1 (Z - \bar{Z})^2 \, p(Z) \, dZ \]

\(a, b \leftrightarrow \bar{Z}, g \quad \text{Two equations, two unknowns} \)

Mixture fraction variance:
\[\frac{\partial \bar{\rho} g}{\partial t} + \frac{\partial \bar{\rho} u_j g}{\partial x_j} = - \frac{\partial}{\partial x_j} \left(\bar{\rho} u_j Z^2 \right) + P - \bar{\rho} \chi \]
Numerical implementation (flame sheet model)

Mass: \[
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_j}{\partial x_j} = 0
\]

Momentum: \[
\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} - \frac{\partial \rho u_i u_j}{\partial x_j}
\]

Mixture fraction: \[
\frac{\partial \rho \bar{Z}}{\partial t} + \frac{\partial \rho u_j \bar{Z}}{\partial x_j} = -\frac{\partial}{\partial x_j} \left(\rho u_j \bar{Z}^\prime \right), \quad g - \text{equation}
\]

Flame sheet relation: \[
\bar{T} = \int_{0}^{1} T(Z)p(Z)dZ, \ldots
\]
Presumed PDF flamelet model
Influence of finite rate chemistry on flamelet structure

- Chemical kinetics does not affect the flame shape and flame height very much !!!
- Chemical reaction does affect the species and temperature distribution a lot !!!

CH4/air diffusion flame, p=1 bar, Tu=300 K

\[\delta_Z \]
Influence of the finite rate chemistry on maximum species mole fraction and T

- CH4/air diffusion flame, $p=1$ bar, $Tu=300$ K
The flamelet library

- The flamelet equation can be derived using Crocco transformation

$$\frac{1}{2} \chi \frac{d^2 Y_i}{dZ^2} = w_i$$

- Flamelet library

$$Y_i = f_i(Z, \chi), T = f_T(Z, \chi), \rho = f_\rho(Z, \chi)$$

- How to get?

Solve the above flamelet equation using detailed chemical kinetic mechanisms!!
Numerical implementation

• Ensemble average

$$\bar{Y}_i = \frac{1}{\rho} \left(\int_0^1 \int_0^\infty \varphi(Z, \chi) f_\rho(Z, \chi) f_i(Z, \chi) d\chi dZ \right)$$

$$\bar{\rho} = \left(\int_0^1 \int_0^\infty \varphi(Z, \chi) f_\rho(Z, \chi) d\chi dZ \right)$$

• Presumed PDF

– How to get?

$$\varphi(Z, \chi)$$

Similar to flame sheet model. But here there are four unknown parameters. One needs 4 transport equations.
Continuity + momentum \rightarrow k-epsilon equations \rightarrow Transport equations for the mean and variance of mixture fraction, and scalar dissipation rate

Ensemble averages

$$\bar{\rho} = \int_0^1 \int_0^\infty \phi(Z, \chi) f_{\rho}(Z, \chi) d\chi dZ$$

$$\tilde{Y}_i, \ldots$$
Other modeling approaches
Direct modeling of mean reaction rates: Eddy dissipation concept model

Species:
\[
\frac{\partial \tilde{\rho} \tilde{Y}_i}{\partial t} + \frac{\partial \tilde{\rho} \tilde{u}_j \tilde{Y}_i}{\partial x_j} = - \frac{\partial}{\partial x_j} \left(\tilde{\rho} \tilde{u}_j \tilde{Y}_i'''' \right) + \bar{\omega}_i
\]

\[
\bar{\omega}_i = C_{EDC} \frac{1}{t_0} \min \left(Y_F, \frac{Y_O}{\gamma} \right)
\]

‘Mixed is burned’ model
Modeling of turbulent premixed flames
Vo=0.45 m/s, phi=1.17; Vin=120 m/s, phi=1.0
Modeling of turbulent premixed flames

- Desirable Models
 - taking into account the basic features of turbulent premixed flames
 - wrinkling
 - stretch
 - local extinction, re-ignition
 - local flame structure
 - ...
 - Computationally inexpensive
 - Valid for wide parameter range

with reasonably detailed chemistry
Modeling of turbulent premixed flames

a unified model does not exist

- Examples of models
 - $k-\varepsilon$ model
 - global chemistry + EDC/EBU ...
 - detailed chemistry + G-equation + presumed PDF + flamelet library
 - BML ...
 - Flame surface density models

- Resolved issues
 - Mean flame position
 - Mean major species
 - CO2, O2, UHC, ...
 - Mean temperature

- Unresolved issues
 - intermediate species
 - CO
 - NOx
 - soot
 - flame dynamics
Direct modeling of mean reaction rates: flame surface density model

Species:
\[
\frac{\partial \rho \tilde{Y}_i}{\partial t} + \frac{\partial \rho \tilde{u}_j \tilde{Y}_i}{\partial x_j} = - \frac{\partial}{\partial x_j} \left(\rho u_j \tilde{Y}_i \right) + \omega_i
\]

\[
\bar{\omega}_F \approx \frac{\rho_u A_L S_L Y_{F,u}}{V}
\]

\[
= \rho_u S_L Y_{F,u} \left(\frac{A_L}{V} \right)
\]

\[
= \rho_u S_L Y_{F,u} \Sigma
\]
- Mean flame brush
 - ensemble of laminar flamelets

- Global structure
 - Wrinkling and fluctuating laminar flamelets

- Local structure
 - stretched local laminar flamelet
Stretched laminar flamelet library

![Graph showing the mole fraction of oxygen (O₂) and carbon monoxide (CO) with different stretch rates (K). The graph plots mole fraction against the dimensionless stretch parameter (G/mm). The stretch rates are 0 s⁻¹, 500 s⁻¹, 1000 s⁻¹, and 2200 s⁻¹.]
Influence of flame stretch on Laminar flames

- 1-D geometry
 - Counterflow fresh-to-burned configuration
 - Counterflow fresh-to-fresh twin-flame configuration

- Detailed chemical kinetic mechanisms (up to C3)
 - Peters’ group (Lecture notes in physics m15)

- Numerical code
 - Chemkin
 - Cantera
Level-set Based Flamelet Library Approach

Counterflow DNM with detailed chemistry

Structures of laminar flamelet (quenching & species distributions)

Level-set G formulation

Statistics of flamelets (fluctuations and wrinkling)

Ensemble average based on presumed PDF

Mean Turbulent Flame
Mean Flame Position – Level-set G-equation

\[\tilde{G}(x_i, t) = \tilde{G}_0 = 0 \quad \Rightarrow \quad \frac{\partial \tilde{G}}{\partial t} + \frac{\partial \tilde{G}}{\partial x_i} \frac{\partial x_i}{\partial t} = 0 \quad (1) \]

\[n_i = -\sqrt{\frac{\partial \tilde{G}}{\partial x_j} \frac{\partial \tilde{G}}{\partial x_j}} \quad (2) \]

\[\frac{dx_i}{dt} = \tilde{u}_i + n_i s_T \quad (3) \]

Insert (3) in (1) \[\Rightarrow \quad \frac{\partial \tilde{G}}{\partial t} + \tilde{u}_i \frac{\partial \tilde{G}}{\partial x_i} = -s_T n_i \frac{\partial \tilde{G}}{\partial x_i} \]

Use (2) \[\Rightarrow \quad \frac{\partial \tilde{G}}{\partial t} + \tilde{u}_i \frac{\partial \tilde{G}}{\partial x_i} = s_T \sqrt{\frac{\partial \tilde{G}}{\partial x_j} \frac{\partial \tilde{G}}{\partial x_j}} \]
VR-1 LDA data: $u/S_L = 10 - 14; \ l/\delta_L = 40 - 200$

Thin reaction & flamelet regime (Peters)!
Previous RANS: CO Simulation

Exp. data
- high S_T, high G_{var}
- low S_T, high G_{var}
- low S_T, low G_{var}

EDC

CO mole fraction

y [m]
RANS with new FLA: profiles at $x=150$ mm

(1) no stretch & wrinkling; (2) with stretch, no wrinkling; (3) with stretch & wrinkling

Nilsson & Bai 29th symp
RANS with new FLA: profiles at $x=350$ mm

(1) no stretch & wrinkling; (2) with stretch, no wrinkling; (3) with stretch & wrinkling

Nilsson & Bai 29th symp
Large eddy simulations: LES

- Filter away the small scales
- Retain the large eddies (larger than Taylor micro scales)
- Large scale unsteady motion is resolved
- Eddies smaller than the filter size need to be modeled
- Flame thickness is typically thinner than the LES grid size
- Models are needed to account for the unresolved scales
- Models are similar to the RANS models
- Computational cheaper than DNS, but more expensive than RANS
Large Eddy Simulation of bluff-body flame

Streamwise vorticity 500 1/s

Flame surface G=0

Flame fluctuations, large scale wrinkling are captured!
LES of HCCI engine