Production of prebiotics from hemicellulose

PATRICK ADLERCREUTZ, DIV. OF BIOTECHNOLOGY
Gut microbiota

- Gut microbiota – microorganisms in our gastrointestinal tract
- The gut microbiota has a large influence on our health and well-being
- How can we influence our gut microbiota?
Probiotics and prebiotics

- Probiotics – beneficial microorganisms in the gut microbiota
- Prebiotics – substrates promoting beneficial microorganisms
Arabinoxylan, AXOS and XOS

• Arabinoxylan (AX), and oligosaccharides derived from AX (AXOS and XOS) are prebiotics
• XOS and AXOS have positive effects on glucose metabolism, lipid metabolism and metabolic disorders
• The effects depend on the molecular size and structure

Selective enzymatic hydrolysis of arabinoxylan

\[
\begin{align*}
\rightarrow & \quad 4)-\beta-D-Xylp-(1\rightarrow 4)-\beta-D-Xylp-(1\rightarrow 4)-\beta-D-Xylp-(1\rightarrow 4)-\beta-D-Xylp-(1\rightarrow \\
& \quad 3 \quad 2 \quad 2 \quad 2
\end{align*}
\]

\[\alpha-L-araf \quad \alpha-L-araf\]

\[\text{\textit{\textalpha-L-arabinofuranosidase}}\]

\[\text{\textit{\textend- \textbeta-1,4-xylanase}}\]
Xylanase hydrolysis of rye flour arabinoxylan

Falck et al (2013)
J. Agric. Food Chem. 61, 7333
Processing of cereal residues

Products

- Barley1
- Oat1
- Rye1

- Rye2
Lund University

ANTIDIABETIC FOOD CENTRE

A Centre of Excellence in Research and Innovation

- Duration 2007-2017
- Budget 34 000 000 USD
- Approx. 50 senior researchers from 4 faculties
- Mission: Preventing type 2 diabetes with food.
Effects on mice

<table>
<thead>
<tr>
<th></th>
<th>HFD</th>
<th>Oat0</th>
<th>Oat1</th>
<th>Rye0</th>
<th>Rye1</th>
<th>Rye2</th>
<th>Guar</th>
<th>LFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mM)</td>
<td>6.5 ± 0.3</td>
<td>6.1 ± 0.2</td>
<td>6.1 ± 0.3</td>
<td>7.2 ± 0.2</td>
<td>6.6 ± 0.3</td>
<td>6.0 ± 0.2</td>
<td>6.0 ± 0.3</td>
<td>5.4 ± 0.3</td>
</tr>
<tr>
<td>Fructosamine (mM)</td>
<td>505 ± 17</td>
<td>550 ± 9</td>
<td>515 ± 25</td>
<td>470 ± 16</td>
<td>523 ± 25</td>
<td>435 ± 18</td>
<td>497 ± 40</td>
<td>535 ± 14</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>4.4 ± 0.4</td>
<td>4.3 ± 0.4</td>
<td>5.8 ± 0.9</td>
<td>3.1 ± 0.4</td>
<td>3.4 ± 0.5</td>
<td>1.4 ± 0.2</td>
<td>2.3 ± 0.4</td>
<td>2.9 ± 0.2</td>
</tr>
</tbody>
</table>

PCA plot

Oat products stimulate *Lactobacilli*

Rye and guar products stimulate *Bifidobacteria*

Why are bifidobacteria stimulated by the oligosaccharide-rich product?
Bifidobacterium adolescentis consumes AXOS from rye flour

Falck et al (2013)
J. Agric. Food Chem. 61, 7333
Growth of *Weissella strains* on hydrolysed birchwood xylan

*isolated from Indian food (by 16S rDNA either *W. cibaria* or *W. confusa*)

Patel et al (2013)
FEMS Microbiol. Lett. 346, 20
GH43 β-xylosidase from *Weissella* sp. strain 92

GH43 \(\beta\)-xylosidase from *Weissella* sp. strain 92

Hydrolysis of XOS by *Weissella* β-xylosidase

Kinetics of hydrolysis by *Weissella* β-xylosidase

<table>
<thead>
<tr>
<th>Substrate</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>K_M (mM)</th>
<th>k_{cat}/K_M (s$^{-1}$mM$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Nitrophenyl-β-D-xylopyranoside</td>
<td>258 ± 11</td>
<td>7.4 ± 1.1</td>
<td>34.9 ± 5.4</td>
</tr>
<tr>
<td>(1→4)-β-D-xylobiose (X2)</td>
<td>961 ± 25</td>
<td>7.2 ± 0.5</td>
<td>134 ± 10</td>
</tr>
<tr>
<td>(1→4)-β-D-xylotriose (X3)</td>
<td>900 ± 13</td>
<td>6.5 ± 0.3</td>
<td>138 ± 7</td>
</tr>
<tr>
<td>(1→4)-β-D-xylotetraose (X4)</td>
<td>770 ± 7</td>
<td>17 ±0.3</td>
<td>54.3 ± 0.9</td>
</tr>
</tbody>
</table>

Weissella β-xylosidase. Activity on arabinose substrates

- Low activity on \(p \)-nitrophenyl-\(\alpha \)-L-arabinofuranoside
- No activity on AXOS
- The bacteria do not grow on AXOS
Further development of (A)XOS production processes
Process steps.
From rye bran to prebiotic products

• Heat pretreatment
• Starch degradation (amylase, amyloglucosidase)
• Protein degradation (protease)
• Separation steps to remove small molecules (ethanol precipitation)
• Xylan hydrolysis (xylanase)
Process schemes

Products

<table>
<thead>
<tr>
<th></th>
<th>Mass</th>
<th>AX</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yield, % (w/w)</td>
<td>Yield, % (w/w)</td>
<td>Content, % (w/w)</td>
<td>A/X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Products based on supernatants isolated before heat pretreatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2S-A</td>
<td>22</td>
<td>12</td>
<td>11</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2S-B</td>
<td>20</td>
<td>10</td>
<td>11</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3S-A</td>
<td>23</td>
<td>10</td>
<td>9</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3S-B</td>
<td>23</td>
<td>11</td>
<td>10</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Products based on supernatants isolated after heat pretreatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-A</td>
<td>17</td>
<td>33</td>
<td>41</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-B</td>
<td>13</td>
<td>33</td>
<td>53</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2P-A</td>
<td>11</td>
<td>23</td>
<td>45</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2P-B</td>
<td>8</td>
<td>25</td>
<td>60</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3P-A</td>
<td>11</td>
<td>26</td>
<td>48</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3P-B</td>
<td>8</td>
<td>21</td>
<td>58</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Falck et al (2014) Bioresource Technol. 174,
Product composition

Process steps.
From rye bran to prebiotic products

- Heat pretreatment
- Starch degradation (amylase, amyloglucosidase)
- Protein degradation (protease)
- Separation steps to remove small molecules (ethanol precipitation)
- Xylan hydrolysis (xylanase)
Hydrolysis by *R. marinus* xylanase (GH10)

[Graph showing HPAEC-PAD analysis of xylan samples before and after substitution removal, with labels for each sample]

Hydrolysis by Pentopan Mono BG (GH11)

Time course of xylanase catalysed hydrolysis

Conclusions

- Xylanases are useful for production of prebiotic oligosaccharides from arabinoxylan.
- The products have positive health effects in mice on a high fat diet.
- Different xylanases produce different AXOS.
- Selective stimulation of beneficial gut bacteria (such as *Bifidobacteria*) is possible.
- *Weissella* strains proven to use XOS. Putative probiotics.
Acknowledgements

Div. of Biotechnology
Peter Falck
Patrick Adlercreutz
Eva Nordberg Karlsson
Carl Grey
Javier Linares-Pastén
Anna Aronsson

Div. of Biochemistry
Henrik Stålbrand

Collaborators within AFC
Karin Berger
Cecilia Holm
Caroline Linninge
Ulf Nilsson
Ulrika Axling
Margareta Nyman

Funding

Antidiabetic Food Centre at Lund University

The Swedish Research Council (VR)

Vinnova